Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\)
\(a)\)\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(A=100+99+98+97+...+2+1\)
\(A=\frac{100\left(100+1\right)}{2}\)
\(A=5050\)
\(b)\)\(B=3\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)
\(B=\left(2^4-1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)
\(B=\left(2^8+1\right).....\left(2^{64}+1\right)+1\)
\(............\)
\(B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(B=2^{128}-1+1\)
\(B=2^{128}\)
Chúc bạn học tốt ~
\(1)\)
\(c)\)\(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(C=\left(a+b\right)^2+2\left(a+b\right)c+c^2+\left(a+b\right)^2-2\left(a+b\right)c+c^2-2\left(a+b\right)^2\)
\(C=2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2\)
\(C=2c^2\)
\(2)\)
\(a)\)\(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(VP=a^3+3a^2b+3ab^2+b^3-3ab\left(a+b\right)\)
\(VP=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)\)
\(VP=a^3+b^3=VT\) ( đpcm )
\(b)\)\(VT=a^3+b^3+c^3-3abc\)
\(VT=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(VT=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(VT=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(VT=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\) ( đpcm )
Từ đó suy ra :
\(i)\)\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)\(\Rightarrow\)\(a+b+c=0\)
Hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)
Chúc bạn học tốt ~
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c
Bài 2:
a+b+c+d=0
nên b+c=-(a+d)
\(a^3+b^3+c^3+d^3\)
\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)
\(=\left(b+c\right)\left(3ad-3bc\right)\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
Bài 2:
\(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3ac-3bc=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
=>a=b=c
a) Co:a+b+c+d=0
=> a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)
b) Co: a+b+c=9
=> (a+b+c)^2 = 49
=> a^2 + b^2 +c^2 + 2(ab + bc + ca) = 49
=> 2(ab+bc+ca) = -4
=> ab+bc+ca= -2
2) \(8x^3-12x^2+6x-1=0\leftrightarrow\left(2x-1\right)^3=0\leftrightarrow2x-1=0\leftrightarrow x=\frac{1}{2}\)
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)
\(\left(a+b\right)^3-3ab\left(a+b\right)\\ =\left(a^3+3a^2b+3ab^2+b^3\right)-3a^2b-3ab^2\\ =a^3+b^3\)
b.
\(a^3+b^3+c^3-3abc\\ =\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\\ =\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)\\ =\left(a+b+c\right)\left(a^2+2ab+b^2-ab-bc+c^2\right)-3ab\left(a+b+c\right)\\ =\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Bài 1:
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)
\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+\left(a+b+c\right)a+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)
\(=\left(b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac+a^2+ab+ac+a^2\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)
\(=\left(b+c\right)\left(3a^2+3ab+3ac+2bc+b^2+c^2\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)
\(=\left(b+c\right)\left(3a^2+3ab+3ac+2bc+b^2+c^2-b^2+bc-c^2\right)\)
\(=\left(b+c\right)\left(3a^2+3ab+3ac+3bc\right)\)
\(=3\left(b+c\right)\left(a^2+ab+ac+bc\right)\)
\(=3\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)
\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Bài 2:
Từ câu 1b ta đã chứng minh được:
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Thay a + b + c = 0 vào ta được
\(a^3+b^3+c^3-3abc=0\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(a+b+c=9\Rightarrow\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)=81=53+2\left(ab+bc+ca\right)\Rightarrow2\left(ab+bc+ca\right)=28\Rightarrow ab+bc+ca=14\)