Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
Bài 1:
Giải:
Ta có: \(\left\{{}\begin{matrix}3x=4y\\5y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)
Mà \(xyz=30\)
\(\Rightarrow240k^3=30\)
\(\Rightarrow k^3=\dfrac{1}{8}\)
\(\Rightarrow k=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=2,5\end{matrix}\right.\)
Vậy...
Bài 2: sai đề
Bài 3:
Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)
Ta có: \(x+2y+3z=38\)
\(\Rightarrow2k+1+8k-6+18k+15=38\)
\(\Rightarrow28k=28\)
\(\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\\z=11\end{matrix}\right.\)
Vậy...
1) Ta có :
\(3x=4y\Rightarrow\dfrac{3x}{12}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}\) <=> \(\dfrac{x}{8}=\dfrac{y}{6}\)
\(5y=6z\Rightarrow\dfrac{5y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\)
=> \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)
Thay vào đẳng thức xyz = 30
=> 8k.6k.5k = 30
<=> 240k3 = 30
<=> k3 = 8
<=> k = 2
\(\Rightarrow\left\{{}\begin{matrix}x=8.2=16\\y=6.2=12\\z=5.2=10\end{matrix}\right.\)
b) Câu này cũng tương tự câu 1 nha ! Đặt k luôn , còn không bình phương lên rồi dùng tính chất dãy tỉ số bằng nhau .
c) Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\)
=> \(\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)
Thay vào đẳng thức , ta có :
x + 2y + 3z = 2k + 1 + 2(4k - 3) + 3(6k + 5) = 38
=> 28k = 38
=> k = \(\dfrac{19}{14}\)
Vậy .....
Bài 1:
a) \(x^2+10x+26+y^2+2y=(x^2+10x+25)+(y^2+2y+1)\)
..................................................= \(\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(z^2-6z+5-t^2-4t=(z^2-6t+9)-(t^2+4t+4)\)
............................................= \(\left(z-3\right)^2-\left(t+2\right)^2\)
c) \(x^2-2xy+2y^2+2y+1=(x^2-2xy+y^2)+(y^2+2y+1)\)
..................................................= \(\left(x-y\right)^2+\left(y+1\right)^2\)
d) \(4x^2-12x-y^2+2y+8=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)
.................................................= \(\left(2x-3\right)^2-\left(y-1\right)^2\)
Bài 2:
a) \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-16\)
b) \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)
c) \(\left(y+2z-3\right)\left(y-2z+3\right)=y^2-\left(2z-3\right)^2\)
d) \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)
Trong mấy cái số viết liền ở câu a bạn thêm phân số nha, mình làm nhanh nên quên ghi.
a) \(\frac{x}{2}=\frac{y}{3};\frac{y}{3}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}=\frac{x-2y+3z}{2-6+9}=\frac{19}{5}\)
\(\frac{x}{2}=\frac{19}{5}\Rightarrow x=\frac{38}{5}\)
\(\frac{y}{3}=\frac{19}{5}\Rightarrow y=\frac{57}{5}\)
\(\frac{z}{3}=\frac{19}{5}\Rightarrow z=\frac{57}{5}\)
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
Ta có: x : y : z = 3 : 4 : 5
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Mà 2x2 + 2y2 - 3z2 = -100
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
=> \(x^2=4.3=12\Rightarrow x=\sqrt{12}\)
\(y^2=4.4=16\Rightarrow x=4\)
\(z^2=4.5=20\Rightarrow z=\sqrt{20}\)
Vì x:y:z = 3:4:5
=>x/3=y/4=z/5
=>2x^2/2.3^2= 2.y^2/2.4^2=3.z^2/3.5^2
=>2.x^2/6^2=2.y^2/8^2=3.z^2/15^2
Áp dụng tính chất dãy Tỉ số = nhau. Ta có:
2.x^2+2y^2-3z^2/18+32-75= -100/-25= 4
=>x/3=4=>x= 12.
=>y/4=4=>y= 16.
=>z/5= 4=>z=20.
Vậy........