K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=2^2=4\)

\(\Rightarrow a^2+b^2\ge2\)

Đẳng thức xảy ra khi \(a=b=1\)

Bài 3:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{2}=2\)

Đẳng thức xảy ra khi \(a=b=1\)


29 tháng 5 2017

Bài 4:

Áp dụng bất đẳng thức Cauchy-shwarz dạng engel ta có:

\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\dfrac{9}{\left(a+b+c\right)^2}=\dfrac{9}{9}=1\)

Dấu " = " xảy ra khi a = b = c = 1

\(\Rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Bài 1:
Ta có:
\(a^2+b^2-\frac{(a+b)^2}{2}=\frac{2(a^2+b^2)-(a+b)^2}{2}=\frac{(a-b)^2}{2}\geq 0\)

\(\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}=\frac{2^2}{2}=2\)

(đpcm)

Dấu "=" xảy ra khi $a=b=1$

NV
29 tháng 1 2021

1.

Sửa đề: \(S=\dfrac{1}{6}\left(ch_a+bh_c+ah_b\right)\)

\(a.h_a=b.h_b=c.h_c=2S\Rightarrow\left\{{}\begin{matrix}h_a=\dfrac{2S}{a}\\h_b=\dfrac{2S}{b}\\h_c=\dfrac{2S}{c}\end{matrix}\right.\)

\(\Rightarrow6S=\dfrac{2Sc}{a}+\dfrac{2Sb}{c}+\dfrac{2Sa}{b}\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=3\)

Mặt khác theo AM-GM: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{abc}{abc}}=3\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

\(\Leftrightarrow\) Tam giác đã cho đều

NV
29 tháng 1 2021

2.

Bạn coi lại đề, biểu thức câu này rất kì quặc (2 vế không đồng bậc)

Ở vế trái là \(2\left(a^2+b^2+c^2\right)\) hay \(2\left(a^3+b^3+c^3\right)\) nhỉ?

3.

Theo câu a, ta có:

\(VT=\dfrac{2S}{a}+\dfrac{2S}{b}+\dfrac{2S}{c}\ge\dfrac{18S}{a+b+c}=\dfrac{18.pr}{a+b+c}=9r\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Hay tam giác đã cho đều

8 tháng 7 2017

a) Vì a, b, c là độ dài 3 cạnh của một tam giác

⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)

⇒ a + c – b > 0 và a + b – c > 0

Ta có: (b – c)2 < a2

⇔ a2 – (b – c)2 > 0

⇔ (a – (b – c))(a + (b – c)) > 0

⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).

Vậy ta có (b – c)2 < a2 (1) (đpcm)

b) Chứng minh tương tự phần a) ta có :

( a – b)2 < c2 (2)

(c – a)2 < b2 (3)

Cộng ba bất đẳng thức (1), (2), (3) ta có:

(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2

⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2

⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2

⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).

NV
23 tháng 1 2021

a.

Theo BĐT tam giác: \(c< a+b\Rightarrow c^2< ac+bc\)

\(b< a+c\Rightarrow b^2< ab+bc\) ; \(a< b+c\Rightarrow a^2< ab+ac\)

Cộng vế với vế: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

b.

Do a;b;c là 3 cạnh của tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\b+c-a>0\\c+a-b>0\end{matrix}\right.\)

\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(b+c-a\right)\left(a+c-b\right)\le c^2\) ; \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

Nhân vế với vế:

\(\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\)

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2: 

Áp dụng BĐT Bunhiacopxky:

$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$

$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$

$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$

$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>

 

6 tháng 4 2017

Bài 1:

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)

Ta sẽ chứng minh nó là GTLN

Thật vậy ta cần chứng minh

\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)

\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng theo vế ta có:

\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)

Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng

Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)

Bài 3:

Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là

\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:

\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)

Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)

\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM

Đẳng thức xảy ra khi \(a=b=c=1\)

T/b:Vâng, rất giỏi :GT8:

4 tháng 4 2017

lần sau đăng từng câu 1 dc ko bn :)