Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử G là trọng tâm tam giác ABC, ta sẽ chứng minh G' cũng là trọng tâm tam giác A'B'C'.
G là trọng tâm tam giác ABC nên: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta cần chứng minh: \(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=\overrightarrow{0}\).
Theo giả thiết:
\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AG}+\overrightarrow{GA'}+\overrightarrow{BG}+\overrightarrow{GB'}+\overrightarrow{CG}+\overrightarrow{GC'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}+\left(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}-\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}-\overrightarrow{0}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=\overrightarrow{0}\)
Vậy G là trọng tâm tam giác A'B'C' hay hai tam giác ABC và A'B'C' có cùng trọng tâm.
Các kí hiệu bên dưới đều là vecto chứ ko phải đoạn thẳng:
a/ \(BB'+CC'+BA+CA=2AA'+BA+CA\)
\(=2\left(AB+BA'\right)+BA+CA=2AB+2BA'+BA+CA\)
\(=AB+CA+2BA'=CB+2BA'=CA'+A'B+2BA'\)
\(=BA'+CA'\)
b/ \(AA'+BB'+CC'=AB+BA'+BC+CB'+CA+AC'\)
\(=AB+BC+CA+BA'+CB'+AC'\)
\(=AC+CA+BA'+CB'+AC'\)
\(=BA'+CB'+AC'\)
a) Ta có:
\(\overrightarrow{AB'}+\overrightarrow{AC'}=\overrightarrow{BC}+\overrightarrow{AB}+\overrightarrow{BC'}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{0}\).
Vậy A là trung điểm của B'C'.
b)
A B C B' C' A'
Theo câu a ta chứng minh được A là trung điểm của B'C'.
Tương tự ta chứng minh được: B là trung điểm của A'C'; C là trung điểm của A'B'.
Từ đó suy ra ba đường thẳng AB', BB', CC' là ba đường trung tuyến của tam giác A'B'C' nên ba đường thẳng AA', BB', CC' đồng quy.
Lời giải:
a)
Vì $B,I,C$ thẳng hàng, $I$ nằm giữa $B$ và $C$ nên \(\overrightarrow{BI},\overrightarrow{IC}\) là 2 vecto cùng hướng
Mà $I$ là trung điểm của $BC$ nên \(|\overrightarrow{BI}|=|\overrightarrow{IC}|\)
Từ 2 điều trên suy ra \(\overrightarrow{BI}=\overrightarrow{IC}\)
b)
Theo tính chất trung tuyến- trọng tâm thì \(\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AI}\)
\(\Leftrightarrow \overrightarrow{AG}=\frac{2}{3}(\overrightarrow{AG}+\overrightarrow{GI})\)
\(\Leftrightarrow \frac{1}{2}\overrightarrow{AG}=\overrightarrow{GI}=-\overrightarrow{IG}\)
\(\Leftrightarrow \overrightarrow{IG}=-\frac{1}{2}\overrightarrow{AG}(1)\)
$J$ là trung điểm của $BB'$ nên \(\overrightarrow{BJ}=\frac{1}{2}\overrightarrow{BB'}=-\frac{1}{2}\overrightarrow{B'B}(2)\)
Từ (1) và (2) kết hợp với \(\overrightarrow{B'B}=\overrightarrow{AG}\) suy ra \(\overrightarrow{IG}=\overrightarrow{BJ}\) (đpcm)
Lời giải:
Bổ đề: Tam giác $ABC$ có trọng tâm $G$
\(\Leftrightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Chứng minh:
* Chiều thuận:
Kéo dài $AG$ cắt $BC$ tại $M$ thì $M$ là trung điểm $BC$ nên $\overrightarrow{BM}+\overrightarrow{CM}=\overrightarrow{0}$
Ta có: \(\overrightarrow{GM}=\overrightarrow{GB}+\overrightarrow{BM};\overrightarrow{GM}=\overrightarrow{GC}+\overrightarrow{CM}\)
\(\Rightarrow 2\overrightarrow{GM}=\overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GC}+\overrightarrow{CM}=\overrightarrow{GB}+\overrightarrow{GC}\)
Mà theo tính chất trọng tâm: \(-\overrightarrow{GA}=2\overrightarrow{GM}\)
\(\Rightarrow -\overrightarrow{GA}=\overrightarrow{GB}+\overrightarrow{GC}\) \(\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
* Chiều đảo:
Gọi $M,N$ là trung điểm của $BC,AC$
Vì \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Leftrightarrow \overrightarrow{GA}+(\overrightarrow{GM}+\overrightarrow{MB})+(\overrightarrow{GM}+\overrightarrow{MC})=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{GA}+2\overrightarrow{GM}=\overrightarrow{0}\Rightarrow \overrightarrow{GA}=-2\overrightarrow{GM}\) nên $G,A,M$ thẳng hàng.
Tương tự: $G,B,N$ thẳng hàng nên $G$ là trọng tâm tam giác $ABC$
Ta có đpcm.
----------------------------------------------
Áp dụng vào bài:
$G$ là trọng tâm của $ABC$ và $A'B'C'$
\(\Leftrightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}=\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\)
\(\Leftrightarrow \overrightarrow{GA'}-\overrightarrow{GA}+\overrightarrow{GB'}-\overrightarrow{GB}+\overrightarrow{GC'}-\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{0}\)
Cách khác:
Gọi \(G,G'\)lần lượt là trọng tâm của \(\Delta ABC,\Delta A'B'C'\) ,ta có:
\(3\overrightarrow{GG'}=\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\)
\(3\overrightarrow{GG'}=\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+\left(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\right)\)
\(G\) là trọng tâm của \(\Delta ABC\) \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Rightarrow3\overrightarrow{GG'}=\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\)
Để hai tam giác ABC và A'B'C' có trọng tâm trùng nhau \(\Rightarrow\overrightarrow{GG'}=\overrightarrow{0}\)
\(\Rightarrow3\overrightarrow{GG'}=\overrightarrow{0}\Leftrightarrow\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{0}\)(đpcm)
1) đây nha : https://hoc24.vn/hoi-dap/question/637285.html
câu 2 cũng chả khác gì cả