Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ba điểm thẳng hàng khi:
+) Ba điểm cùng nằm trên một đường thẳng
+) Có một điểm và chỉ một điểm nằm giữa hai điểm còn lại
Bài tập:
1) Vẽ ba điểm A, B, C thẳng hàng sao cho điểm B nằm giữa hai điểm A và C. Có mấy trường hợp hình vẽ?
2) a) Cho ba điểm A, B, C thẳng hàng thì có mấy trường hợp hình vẽ?
b) Trong mỗi trường hợp, có mấy điểm nằm giữa hai điểm còn lại?
c) Hãy nói cách vẽ ba điểm ko thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
tự vẽ hình nhé
giải
a/ do BM//AD nên =>
DAB=MBA (vì AD=BM)
b/ Do I là trung điểm của AB vàM là trung điểm của BC nên
=> I thẳng hàng với M
Ta có: AD // BM nên
=> D thẳng hàng với I
Do I thẳng hàng với M
mà D thẳng hàng với I
nên => Cả 3 điểm thẳng hàng với nhau
c/ Do 3 điểm thẳng hàng với nhau nên
=> BD // AM
A B C . M / / . I // // D /
a) Vì AD // BM
=> \(\widehat{DAB}=\widehat{MBA}\left(soletrong\right)\)
Xét \(\Delta DAB\) và \(\Delta MBA\) có:
DA = BM (gt)
\(\widehat{DAB}=\widehat{MBA}\left(cmt\right)\)
AB (chung)
Do đó: \(\Delta DAB=\Delta MBA\left(c-g-c\right)\)
b) Vì \(\Delta DAB=\Delta MBA\left(cmt\right)\)
=> \(\widehat{DBA}=\widehat{MAB}\) (hai cạnh tương ứng)
Xét \(\Delta DIB\) và \(\Delta MIA\) có:
BI = IA (I là trung điểm của AB)
\(\widehat{DIB}=\widehat{MIA}\left(đđ\right)\)
\(\widehat{DBI}=\widehat{IAM}\left(\widehat{DBA}=\widehat{MAB}\right)\)
Do đó: \(\Delta DIB=\Delta MIA\left(g-c-g\right)\)
=> DI = IM (hai cạnh tương ứng)
Ta có: \(\widehat{DIB}=\widehat{MIA}\left(đđ\right)\)
mà \(\widehat{DIB}+\widehat{DIA}=180^0\) (B; I; A thẳng hàng)
=> \(\widehat{DIA}+\widehat{MIA}=180^0\)
hay \(\widehat{DIM}=180^0\)
=> D; I; M thẳng hàng
c) Vì \(\widehat{DBA}=\widehat{MAB}\left(cmt\right)\)
=> BD // AM
![](https://rs.olm.vn/images/avt/0.png?1311)
Cm đoạn thẳng bằng nhau chứ, s lại là đ.thẳng đc????
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E D F 1 2
a) Vì BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
Nên AB2 + AC2 = BC2
Do đó: \(\Delta ABC\) vuông tại A
b) Xét hai tam giác vuông ABD và EBD có:
BD: cạnh huyền chung
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
Vậy: \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)
Suy ra: DA = DE (hai cạnh tương ứng)
c) \(\Delta DAF\) vuông tại A
=> DF > DA (đường vuông góc ngắn hơn đường xiên)
Mà DA = DE
Do đó: DF > DE (đpcm)
d) Xét hai tam giác vuông ABC và EBF có:
AB = EB (\(\Delta ABD=\Delta EBD\))
\(\widehat{B}\): góc chung
Vậy: \(\Delta ABC=\Delta EBF\left(cgv-gn\right)\)
\(\Rightarrow\) BF = BC (hai cạnh tương ứng)
\(\Rightarrow\) \(\Delta BFC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường trung trực của FC
Do đó: BD là đường trung trực của đoạn thẳng FC (đpcm).
a) Ta có :
\(6^2+8^2=10^2\\ \Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( Định lí Pi-ta-go đảo )
b) Xét \(\Delta DBA\) và \(\Delta DBE\),có :
Chung cạnh BD
\(\widehat{DBA}=\widehat{DBE}\)( BD là tia phân giác )
\(\Rightarrow\Delta BDA=\Delta BDE\left(ch-gn\right)\\ \Rightarrow DA=DE\)
3: Chứng minh hai góc so le trong/đồng vị bằng nhau
Chứng minh cùng vuông góc hoặc cùng song song
Chứng minh bằng cách dùng tỉ lệ
5: Sử dụng tính chất hai đường chéo của hình bình hành, hình thoi, hình chữ nhật, hình vuông
Hoặc dùng tiên đề E cơ lít
6: Sử dụng tính chất hai đường chéo cắt nhau tại trung điểm của mỗi đường của hình bình hành