Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
\(a,\sqrt{\left(\sqrt{2}-3\right)^2}.\sqrt{11+6\sqrt{2}}\)
\(=|\sqrt{2}-3|.\sqrt{9+6\sqrt{2}+2}\)
\(=(3-\sqrt{2}).\left(\sqrt{\left(3+\sqrt{2}\right)^2}\right)\)
\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)
\(=9-2=7\)
\(b,\sqrt{\left(\sqrt{3}-3\right)^2}.\sqrt{\frac{1}{3-\sqrt{3}}}\)
\(=\left(3-\sqrt{3}\right).\frac{\sqrt{1}}{\sqrt{3-\sqrt{3}}}\)
\(=\frac{3-\sqrt{3}}{\sqrt{3-\sqrt{3}}}\)
\(=\sqrt{3-\sqrt{3}}\)
\(c,-\frac{2}{3}\sqrt{\frac{\left(a-b\right)^3.b^5}{c}}.\frac{9}{4}\sqrt{\frac{c^3}{2\left(a-b\right)}}.\sqrt{98b}\)
\(=-\frac{2}{3}.\frac{\sqrt{\left(a-b\right)^3.b^5}}{\sqrt{c}}.\frac{9}{4}.\frac{\sqrt{c^3}}{\sqrt{2\left(a-b\right)}}.7\sqrt{2b}\)
\(=-\frac{2}{3}.\frac{\left(a-b\right)b^2\sqrt{\left(a-b\right)b}}{\sqrt{c}}.\frac{9}{4}.\frac{c\sqrt{c}}{\sqrt{2\left(a-b\right)}}.7\sqrt{2b}\)
\(=-\frac{2}{3}.\frac{9}{4}.7.\frac{\left(a-b\right).b^2\sqrt{\left(a-b\right)b}}{\sqrt{c}}.\frac{c\sqrt{c}}{\sqrt{2\left(a-b\right)}}.\sqrt{2b}\)
\(=-\frac{21}{2}.\left(a-b\right).b^2\sqrt{b}.c.\sqrt{b}\)
\(=\frac{-21}{2}.\left(a-b\right).b^3.c\)
\(d,\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right).2\sqrt{6}\)
\(=\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}.2\sqrt{2}\right).2\sqrt{6}\)
\(=\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\sqrt{2}\right).2\sqrt{6}\)
\(=\left(\sqrt{6}-3\sqrt{3}+4\sqrt{2}\right).2\sqrt{6}\)
\(=2.6-18\sqrt{2}+16\sqrt{3}\)
\(=12-18\sqrt{2}+16\sqrt{3}\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
\(=\sqrt{\frac{3+2\sqrt{3}\sqrt{2}+2}{3-2\sqrt{3}\sqrt{2}+2}}+\sqrt{\frac{3-2\sqrt{3}\sqrt{2}+2}{3+2\sqrt{3}\sqrt{2}+2}}\)
\(=\sqrt{\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)^2}}+\sqrt{\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}+\sqrt{3}\right)^2}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)}\)\
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{5+2\sqrt{6}+5-2\sqrt{6}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=10\)
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-3\)
\(=\sqrt{3}-1\)
a: \(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(=2\sqrt{4\cdot2\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\cdot2\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-\sqrt{2\sqrt{3}}-3\sqrt{2\sqrt{3}}\)
=0
b: \(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\left|2-\sqrt{3}\right|\)
\(=\sqrt{3}+2-\sqrt{3}\)
=2
c: \(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(=\left|\sqrt{7}-4\right|-2\sqrt{7}+3\sqrt{7}\)
\(=4-\sqrt{7}+\sqrt{7}\)
=4
d: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(=\dfrac{\sqrt{10}\left(15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\right)}{\sqrt{10}}\)
\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=15\sqrt{5}+5\cdot2\sqrt{5}-3\cdot3\sqrt{5}\)
\(=16\sqrt{5}\)
e: \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
\(=\sqrt{3}-2\cdot4\sqrt{3}+3\cdot5\sqrt{3}-4\cdot6\sqrt{3}\)
\(=\sqrt{3}-8\sqrt{3}+15\sqrt{3}-24\sqrt{3}\)
\(=-16\sqrt{3}\)
a: Ta có: \(\left(4\sqrt{2}-\dfrac{11}{2}\sqrt{8}-\dfrac{1}{3}\sqrt{288}+\sqrt{50}\right)\cdot\left(\dfrac{1}{2}\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot\left(4\sqrt{2}-11\sqrt{2}-4\sqrt{2}+5\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot6\sqrt{2}=3\)
còn cái nịt