Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số y = m - 2 x - x + 1 xác định khi và chỉ khi m - 2 x ≥ 0 x + 1 ≥ 0 ⇔ x ≤ m 2 x ≥ - 1 .
Do đó tập xác định của hàm số y = m - 2 x - x + 1 là một đoạn trên trục số khi và chỉ khi m 2 > - 1 ⇔ m > - 2
Cho điểm M (2; -1) và đường thẳng Δ : x - y + 1 = 0 . Khi đó khoảng cách từ điểm M đến đường thẳng Δ bằng:
A. √22 B. 2√222 C. 1√212 D. 3√2
Đáp án A
có độ dài nửa trục lớn a = 5và độ dài nửa trục bé b= 3
Gọi là tiếp tuyến của (E) mà song song với d
=> x- 2y + C = 0.
Vì d tiếp xúc với (E) nên ta có:
Nên ta có hai tiếp tuyến của (E) song song với d là:
Vậy khoảng cách từ M đến đường thẳng d là lớn nhất là:
, khoảng cách từ M đến đường thẳng d là bé nhất là:
b: Tọa độ điểm A là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}-x+1=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Tọa độ điểm B là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-1\\-x+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
Tọa độ điểm C là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-1\\x+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
Đáp án B
Gọi hình bình hành là ABCD và
d:x+ y-1 = 0, ∆: 3x – y+ 5= 0 .
Không làm mất tính tổng quát giả sử
Ta có : . Vì I(3;3) là tâm hình bình hành nên C(7;4) ;
=> Đường thẳng ACcó pt là: x- 4y + 9= 0.
Do => Đường thẳng BC đi qua điểm C và có vtpt có pt là: 3x – y- 17= 0.
Khi đó :
Ta có:
Bài 2:
a: \(x⋮5\)
mà 25<=x<=40
nên \(x\in\left\{25;30;35;40\right\}\)
b: \(6⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{2;0;3;-1;4;-2;7;-5\right\}\)