\(n^4+4^n\) là số nguyên tố

b, Đặt A= 1.2.3+2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
7 tháng 10 2017

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

22 tháng 1 2023

chứng minh kiểu j vậy?

sai bét

 

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Bài 1:

$a^2-1=(a-1)(a+1)$

Vì $a$ là số nguyên tố lớn hơn $3$ nên $a$ không chia hết cho $3$. Suy ra $a$ chia $3$ dư $1$ hoặc $2$

Nếu $a$ chia $3$ dư $1\Rightarrow a-1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$

Nếu $a$ chia $3$ dư $2\Rightarrow a+1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$

Vậy $a^2-1\vdots 3(1)$

Mặt khác, $a$ là số nguyên tố lớn hơn $3$ thì $a$ lẻ. Do đó $a$ có dạng $4k+1$ hoặc $4k+3$ ($k\in\mathbb{Z}$)

Nếu \(a=4k+1\Rightarrow a^2-1=(4k+1)^2-1=16k^2+8k\vdots 8\)

Nếu \(a=4k+3\Rightarrow a^2-1=(4k+3)^2-1=16k^2+24k+8\vdots 8\)

Vậy $a^2-1\vdots 8(2)$

Từ $(1);(2)$ mà $(3,8)=1$ nên $a^2-1\vdots 24$ (đpcm)

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Bài 2:

Từ bài 1 ta thấy rằng với mọi số $a$ là số nguyên tố lớn hơn 3 thì $a^2-1\vdots 24(1)$

Tương tự $b^2-1\vdots 24(2)$

Từ \((1);(2)\Rightarrow (a^2-1)-(b^2-1)\vdots 24\)

\(\Leftrightarrow a^2-b^2\vdots 24\) (đpcm)

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

9 tháng 4 2016

nhanh hk

9 tháng 4 2016

\(1a.\)

Ta có: \(n^4+4=\left(n^2\right)^2+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

Vì  \(n^2+2n+2>n^2-2n+2\)  với mọi  \(n\in N\) 

nên để  \(n^4+4\)  là số nguyên tố thì  \(n^2-2n+2=1\)  \(\Leftrightarrow\)  \(\left(n-1\right)^2=0\)  \(\Leftrightarrow\)  \(n-1=0\)  \(\Leftrightarrow\)  \(n=1\)

Vậy, với  \(n=1\)  thì   \(n^4+4\)  là số nguyên tố

19 tháng 3 2017

a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)

vì A nguyên tố nên A chỉ có 2 ước

TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn

TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn

vậy n=2

xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)

2: \(A=n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)