K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Ta có : 

\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)

\(A=\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}\right)\)

\(A>\left(\frac{1}{150}+\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\)

\(A>50.\frac{1}{150}+50\frac{1}{200}\)

\(A>\frac{50}{150}+\frac{50}{200}\)

\(A>\frac{1}{3}+\frac{1}{4}\)

\(A>\frac{7}{12}\)

Vậy \(A>\frac{7}{12}\)

Chúc bạn học tốt ~ 

16 tháng 5 2017

Ta có:\(\frac{1}{101}>\frac{1}{200}\)

          \(\frac{1}{102}>\frac{1}{200}\)

           \(\frac{1}{103}>\frac{1}{200}\)

A=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100\)

hay A>\(\frac{7}{12}\)

A=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100\)

hay A>\(\frac{5}{8}\)

mình ko biết có đúng ko bạn xem kĩ nhé

15 tháng 5 2017

Ta có
\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}=\frac{1}{150}.50=\frac{1}{3}\)
Ta lại có
\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200}\)
\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}=\frac{1}{200}.50=\frac{1}{4}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
\(\RightarrowĐPCM\)

18 tháng 7 2016

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)(50 phân số)

=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)(50 phân số)

=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50\)

=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{3}\)(Đpcm)

18 tháng 4 2018

đề sai nhé \(A>\frac{7}{12}\) mới đúng 

18 tháng 4 2018

Dùng phương pháp CASIO fx 570 ES PLUS thì ta chứng minh được \(A< \frac{7}{12}\)

10 tháng 5 2019

Ta có:

\(\frac{1}{101}\)>\(\frac{1}{200}\)

\(\frac{1}{102}\)>\(\frac{1}{200}\)

\(\frac{1}{103}\)>\(\frac{1}{200}\)

...

\(\frac{1}{200}\)=\(\frac{1}{200}\)

\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{200}\)+\(\frac{1}{200}\)+..+\(\frac{1}{200}\)(100 số hạng)=\(\frac{1}{2}\)

\(\Rightarrow\)\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{2}\)