Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk k copy bạn nhé ! - Lười thôi !
a, Gọi 2 số đó là a, b
Giả sử :
a = x2 + y2
b = n2 + m2
=> ab = ( x2 + y2 ) ( n2 + m2 )
ab = x2 ( n2 + m2 ) + y2 ( n2 + m2 )
ab = ( xn )2 + ( am )2 + ( yn )2 + ( ym )2
ab = [ ( xn )2 + 2xnyn + ( ym )2 ] + [ ( am )2 - 2amyn + ( yn )2 ]
=> ab = ( xn + ym )2 + ( am + yn )2
a, Ta gọi 2 số đó là a, b
Ta có :
a = x2 + y2
b = n2 + m2
=> ab = ( x2 + y2 ) ( n2 + m2 )
* bạn tự nhân rồi tính nhé *
b,
+) k = 3: Gọi 3 số nguyên liên tiếp là n - 1; n ; n + 1
Ta có : (n -1)2 + n2 + (n+1)2 = n2 - 2n + 1+ n2 + n2 + 2n + 1 = 3n2 + 2 chia cho 3 dư 1 => 3n2 + 2 không là số chính phương ( Số chính phương chia cho 3 dư 0 hoặc 1)
+) k = 4 : Gọi 4 số đó là: n - 2; n -1; n ; n + 1
ta có: (n -2)2 + (n -1)2 + n2 + (n+1)2 = n2 - 4n + 4 + n2 - 2n + 1+ n2 + n2 + 2n + 1 = 4n2 - 4n + 6 chia hết cho nhưng không chia hết cho 4
=> không là số cp
+) k = 5 : gọi 5 số đó là n - 2; n -1; n ; n + 1; n + 2
Ta có: (n -2)2 + (n -1)2 + n2 + (n+1)2 + (n+2)2 = n2 - 4n + 4 + n2 - 2n + 1+ n2 + n2 + 2n + 1 + n2 + 4n + 4 = 5n2 + 10 chia hết cho 5 nhưng không chia hết cho 25 => không là số cp
Vậy............................
Đặt \(M=a^2+b^2;N=c^2+d^2\)
\(\Rightarrow M.N=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\)
\(=\left(a^2c^2+b^2d^2\right)+\left(a^2d^2+b^2c^2\right)=\left(ac+bd\right)^2-2abcd+\left(ad-bc\right)^2+2abcd=\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\left(dpcm\right)\)
b/
+ Với k=3 gọi 3 số nguyên liên tiếp là n; (n+1); (n+2)
\(\Rightarrow n^2+\left(n+1\right)^2+\left(n+2\right)^2=n^2+n^2+2n+1+n^2+4n+4=\)
\(=3n^2+6n+5=\left(3n^2+6n+3\right)+2\)chia 3 dư 2 nên không phải là số chính phương (Theo t/c số chính phương khi chia 3 không bao giờ có số dư là 2)
+ Với k=4 gọi 4 số nguyên liên tiếp là n; (n+1); (n+2); (n+3)
\(\Rightarrow n^2+\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\)
\(=n^2+n^2+2n+1+n^2+n^2+4n+4+n^2+6n+9=\)
\(=4n^2+12n+14=\left(4n^2+12n+12\right)+2\)chia 4 dư 2 nên không phải là số chính phương (Theo t/c số chính phương khi chia 4 không bao giờ có số dư là 2)
+ Với k=5 gọi 5 số nguyên liên tiếp là (n-2); (n-1); n; (n+1); (n+2)
\(\Rightarrow\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=\)
\(=n^2-4n+4+n^2-2n+1+n^2+n^2+2n+1+n^2+4n+4=\)
\(=5n^2+10\)chia hết cho 5 nhưng không chia hết cho 25 nên không phải là số cp (theo t/c số cp thì số cp chia hết cho 5 thì chia hết cho 25)