Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như đề bài sai rồi bạn
do mk biến đổi vé phải thành 4x^4+1 nên k thể thành 4(x^4+1):4 đk
a, \(\left(x+1\right)^2-25=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
b, \(\left(xy+4\right)^2-4\left(x+y\right)^2=\left(xy+4\right)^2-\left(2x+2y\right)^2=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
c, xem lại đề nhé
a: \(A=\left(100^2-1\right)\left(100^4+100^2+1\right)=100^6-1\)
b: \(B=\left(\dfrac{1}{5}a-b\right)\left(\dfrac{1}{25}a^2+\dfrac{1}{5}ab+b^2\right)=\left(\dfrac{1}{5}a\right)^3-b^3=\dfrac{1}{125}a^3-b^3\)
c: \(C=\left(2+a\right)\left(4-2a+a^2\right)\left(2-a\right)\left(4+2a+a^2\right)\)
\(=\left(8+a^3\right)\left(8-a^3\right)=64-a^6\)
a) 16x^2 - (4x - 5)^2 = 15
<=> 16x^2 - 16x^2 + 40x - 25 = 15
<=> 40x = 40
<=> x = 1
b) (2x + 3)^2 - 4(x - 1)(x + 1) = 49
<=> 4x^2 + 12x + 9 - 4x^2 - 4x + 4x + 4 = 49
<=> 12x + 13 = 49
<=> 12x = 36
<=> x = 3
c) (2x + 1)(1 - 2x) + (1 - 2x)^2 = 18
<=> 1 - 4x^2 + 1 - 4x + 4x^2 = 18
<=> 2 - 4x = 18
<=> -4x = 16
<=> x = -4
d)2(x + 1)^2 - (x - 3)(x + 3) - (x - 4)^2 = 0
<=> 2x^2 + 4x + 2 - x^2 + 3^2 - x^2 + 8x - 16 = 0
<=> 12x - 5 = 0
<=> 12x = 5
<=> x = 5/12
e) (x - 5)^2 - x(x - 4) = 9
<=> x^2 - 10x + 25 - x^2 + 4x = 9
<=> -6x + 25 = 9
<=> -6x = 9 - 25
<=> -6x = -16
<=> x = -16/-6 = 8/3
f) (x - 5)^2 + (x - 4)(1 - x) = 0
<=> x^2 - 10x + 25 + x - x^2 - x - 4 + 4x = 0
<=> -5x + 21 = 0
<=> -5x = -21
<=> x = 21/5
\(\left(x-5\right)^2-16=\left(x-5\right)^2-4^2=\left(x-5-4\right)\left(x-5+4\right)=\left(x-9\right)\left(x-1\right)\)
\(25-\left(3-x\right)^2=5^2-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)
\(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)=15\left(x-1\right)\left(3x-1\right)\)\(49\left(y-4\right)^2-9\left(y+2\right)^2=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2=\left(7y-28-3y-6\right)\left(7y-28+3y-6\right)=\left(4y-34\right)\left(10y-22\right)\)\(=4.\left(2y-17\right)\left(5y-11\right)\)
e); f) Áp dụng hằng đẳng thức số 6,7 để làm
c) n3 - 2 = (n3 - 8) + 6 = (n -2)(n2 + 2n + 4) + 6
Để n3 - 2 chia hết cho n - 2 <=> 6 chia hết cho n - 2 <=> n - 2 \(\in\) Ư(6) = {-6;-3;-2;-1;1;2;3;6}
Tương ứng n \(\in\) {-4; -1; 0; 1; 3; 4; 5; 8}
Vậy.....
d) n3 - 3n2 - 3n - 1 = (n3 - 1) - (3n2 + 3n + 3) + 3 = (n -1).(n2 + n + 1) - 3.(n2 + n + 1) + 3 = (n - 4)(n2 + n + 1) + 3
Để n3 - 3n2 - 3n - 1 chia hết cho n2 + n + 1 thì (n - 4)(n2 + n + 1) + 3 chia hết cho n2 + n + 1
<=> 3 chia hết cho n2 + n + 1 <=> n2 + n + 1 \(\in\) Ư(3) = {-3;-1;1;3}
Mà n2 + n + 1 = (n + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi n nên n2 + n + 1 = 1 hoặc = 3
n2 + n + 1 = 1 <=> n = 0 hoặc n = -1
n2 + n + 1 = 3 <=> n2 + n - 2 = 0 <=> (n -1)(n +2) = 0 <=> n = 1 hoặc n = -2
Vậy ...
e) n4 - 2n3 + 2n2 - 2n + 1 = (n4 - 2n3 + n2) + (n2 - 2n + 1) = (n2 - n)2 + (n -1)2 = n2(n -1)2 + (n -1)2 = (n-1)2.(n2 + 1)
n4 - 1 = (n2 - 1).(n2 + 1) = (n -1)(n +1)(n2 + 1)
=> \(\frac{n^4-2n^3+2n^2-2n+1}{n^4-1}=\frac{\left(n-1\right)^2\left(n^2+1\right)}{\left(n-1\right)\left(n+1\right)\left(n^2+1\right)}=\frac{n-1}{n+1}\)( Điều kiện: n- 1 ; n + 1 khác 0 => n khác 1;-1)
Để n4 - 2n3 + 2n2 - 2n + 1 chia hết cho n4 - 1 thì \(\frac{n-1}{n+1}\) nguyên <=> n - 1 chia hết cho n + 1
<=> (n + 1) - 2 chia hết cho n +1
<=> 2 chia hết cho n + 1 <=> n + 1 \(\in\) Ư(2) = {-2;-1;1;2} <=> n \(\in\){-3; -2; 0; 1}
n = 1 Loại
Vậy n = -3 hoặc -2; 0 thì...
a) n2 + 2n - 4 = n2 + 2n - 15 + 11 = (n2 + 5n - 3n -15) + 11 = (n - 3)(n + 5) + 11
để n2 + 2n - 4 chia hết cho 11 <=> (n - 3).(n +5) chia hết cho 11 <=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)
n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)
n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)
Vậy với n = 11k + 3 hoặc n = 11k' - 5 thì.....
b) 2n3 + n2 + 7n + 1 = n2. (2n - 1) + 2n2 + 7n + 1 = n2. (2n -1) + n.(2n -1) + 8n + 1
= (n2 + n)(2n -1) + 4.(2n -1) + 5 = (n2 + n + 4)(2n -1) + 5
Để 2n3 + n2 + 7n + 1 chia hết cho 2n - 1 <=> (n2 + n + 4)(2n -1) + 5 chia hết cho 2n -1
<=> 5 chia hết cho 2n -1 <=> 2n - 1 \(\in\)Ư(5) = {-5;-1;1;5}
2n -1 = -5 => n = -2
2n -1 = -1 => n = 0
2n -1 = 1 => n = 1
2n -1 = 5 => n = 3
Vậy....
adu vjp