Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức thành nhân tử:
\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(a^6-a^4+2a^3+2a^2\)
a) \(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(=\left(4x^2-25\right)^2-\left(6x-15\right)^2\)
\(=\left(4x^2-25-6x+15\right)\left(4x^2-25+6x-15\right)\)
\(=\left(4x^2-6x-10\right)\left(4x^2+6x-40\right)\)
\(=\left(4x^2+4x-10x-10\right)\left(4x^2+16x-10x-40\right)\)
\(=\left[4x\left(x+1\right)-10\left(x+1\right)\right]\left[4x\left(x+4\right)-10\left(x+4\right)\right]\)
\(=\left(4x-10\right)\left(x+1\right)\left(4x-10\right)\left(x+4\right)\)
\(=\left(4x-10\right)^2\left(x+1\right)\left(x+4\right)\)
\(=4\left(2x-5\right)^2\left(x+1\right)\left(x+4\right)\)
b) \(a^6-a^4+2a^3+2a^2\)
\(=a^2\left(a^4-a^2+2a+2\right)\)
\(=a^2\left(a^4+a^3-a^3-a^2+2a+2\right)\)
\(=a^2\left[a^3\left(a+1\right)-a^2\left(a+1\right)+2\left(a+1\right)\right]\)
\(=a^2\left(a+1\right)\left(a^3-a^2+2\right)\)
a) ( x2 - 25 )2 - ( x - 5 )2
= [ ( x - 5 )( x + 5 ) ]2 - ( x - 5 )2
= [ ( x - 5 )( x + 5 ) - ( x - 5 ) ][ ( x - 5 )( x + 5 ) + ( x - 5 ) ]
= ( x - 5 )( x + 5 - 1 )( x - 5 )( x + 5 + 1 )
= ( x - 5 )2( x + 4 )( x + 6 )
b) ( 4x2 - 25 )2 - 9( 2x - 5 )2
= ( 4x2 - 25 )2 - 32( 2x - 5 )2
= ( 4x2 - 25 )2 - ( 6x - 15 )2
= [ ( 4x2 - 25 ) - ( 6x - 15 ) ][ ( 4x2 - 25 ) + ( 6x - 15 ) ]
= ( 4x2 - 25 - 6x + 15 )( 4x2 - 25 + 6x - 15 )
= ( 4x2 - 6x - 10 )( 4x2 + 6x - 40 )
= ( 4x2 + 4x - 10x - 10 )( 4x2 + 16x - 10x - 40 )
= [ 4x( x + 1 ) - 10( x + 1 ) ][ 4x( x + 4 ) - 10( x + 4 ) ]
= ( x + 1 )( 4x - 10 )( x + 4 )( 4x - 10 )
= ( 4x - 10 )2( x + 1 )( x + 4 )
c) 4( 2x - 3 )2 - 9( 4x2 - 9 )2
= 22( 2x - 3 )2 - 32( 4x2 - 9 )2
= ( 4x - 6 )2 - ( 12x2 - 27 )2
= [ ( 4x - 6 ) - ( 12x2 - 27 ) ][ ( 4x - 6 ) + ( 12x2 - 27 ) ]
= ( 4x - 6 - 12x2 + 27 )( 4x - 6 + 12x2 - 27 )
= ( -12x2 + 4x + 21 )( 12x2 + 4x - 33 )
= ( -12x2 + 18x - 14x + 21 )( 12x2 - 18x + 22x - 33 )
= [ -12x( x - 3/2 ) - 14( x - 3/2 ) ][ 12x( x - 3/2 ) + 22( x - 3/2 ) ]
= ( x - 3/2 )( -12x - 14 )( x - 3/2 )( 12x + 22 )
= ( x - 3/2 )2( -12x - 14 )( 12x + 22 )
d) a6 - a4 + 2a3 + 2a2
= a2( a4 - a2 + 2a + 2 )
= a2( a4 - 2a3 + 2a3 + 2a2 - 4a2 + a2 + 4a - 2a + 2 )
= a2[ ( a4 - 2a3 + 2a2 ) + ( 2a3 - 4a2 + 4a ) + ( a2 - 2a + 2 ) ]
= a2[ a2( a2 - 2a + 2 ) + 2a( a2 - 2a + 2 ) + 1( a2 - 2a + 2 ) ]
= a2( a2 + 2a + 1 )( a2 - 2a + 2 )
= a2( a + 1 )2( a2 - 2a + 2 )
e) ( 3x2 + 3x + 2 )2 - ( 3x2 + 3x - 2 )2
= [ ( 3x2 + 3x + 2 ) - ( 3x2 + 3x - 2 ) ][ ( 3x2 + 3x + 2 ) + ( 3x2 + 3x - 2 ) ]
= ( 3x2 + 3x + 2 - 3x2 - 3x + 2 )( 3x2 + 3x + 2 + 3x2 + 3x - 2 )
= 4( 6x2 + 6x )
= 4.6x( x + 1 )
= 24( x + 1 )
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
6, \(x^2y+xy^2-4x-4y=xy\left(x+y\right)-4\left(x+y\right)=\left(xy-4\right)\left(x+y\right)\)
7, \(10ax-5ay-2x+y=5a\left(2x-y\right)-\left(2x-y\right)=\left(5a-1\right)\left(2x-y\right)\)
8, xem lại đề bạn nhé
9, \(4x^2-y^2+8y-16=4x^2-\left(y^2-8y+16\right)=4x^2-\left(y-4\right)^2\)
\(=\left(2x-y+4\right)\left(2x+y-4\right)\)
Trả lời:
6, x2y + xy2 - 4x - 4y = ( x2y + xy2 ) - ( 4x + 4y ) = xy ( x + y ) - 4 ( x + y ) = ( x + y )( xy - 4 )
7, 10ax - 5ay - 2x + y = ( 10ax - 5ay ) - ( 2x - y ) = 5a ( 2x - y ) - ( 2x - y ) = ( 2x - y )( 5a - 1 )
8, Sửa đề: x3 - 2x2 + 2x - 4 = ( x3 - 2x2 ) + ( 2x - 4 ) = x2 ( x - 2 ) + 2 ( x - 2 ) = ( x - 2 )( x2 + 2 )
9, 4x2 - y2 + 8y - 16 = 4x2 - ( y2 - 8y + 16 ) = 4x2 - ( y - 4 )2 = ( 2x - y + 4 )( 2x + y - 4 )
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
1.
\(A=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x-9-\left(x^2-9\right)+\left(2x^2-8\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x+4}{x-3}\)
b.
\(A=2\Rightarrow\dfrac{x+4}{x-3}=2\Rightarrow x+4=2\left(x-3\right)\)
\(\Rightarrow x=10\) (thỏa mãn)
2.
\(x^4+2x^2y+y^2-9=\left(x^2+y\right)^2-3^2=\left(x^2+y-3\right)\left(x^2+y+3\right)\)
\(a^5-a\)
\(=a\left(a^4-1\right)\)
\(=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
a) 4(2x-3)^2-9(4x^2-9)^2
=[2(2x-3)]^2-[3(4x^2-9)]^2
=(4x-6)^2-(12x^2-27)^2
=(4x-6+12x^2-27)(4x-6-12x^2+27)
=(12x^2+4x-33)(4x-12x^2+21)
b) a^6-a^4+2a^3+2a^2
=a^4(a^2-1)+2a^2(a+1)
=a^4(a+1)(a-1)+2a^2(a+1)
=(a+1)[(a^4)(a-1)+2a^2]
=(a+1)(a^5+a^4+2a^2)