K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

a = |2x-1/3|-7/4

   Do |2x-1/3| \(\ge\) 0

         |2x-1/3|-7/4 \(\ge\)  7/4 

Dấu = xảy ra <=> 2x-1/3=0. =>. x= 1/6

b    1/3|x-2|+2|3-1/2 y|+4

 Do |x-2| \(\ge\) 0

      |3-1/2y| \(\ge\) 0

   => 1/3|x-2|+2|3-1/2 y|+4 \(\ge\) 4

Dấu = xảy ra <=>\(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)

a: Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)

\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{6}\)

b: Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)

\(2\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)

Do đó: \(\dfrac{1}{3}\left|x-2\right|+2\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)

\(\Leftrightarrow\left|x-2\right|\cdot\dfrac{1}{3}+\left|3-\dfrac{1}{2}y\right|\cdot2+4\ge4\forall x,y\)

Dấu '=' xảy ra khi x=2 và y=6

22 tháng 7 2018

a) |2x-3|+x=21

|2x-3|=21-x

\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=21-x\\2x-3=-\left(21-x\right)\end{cases}}\)

TH1: 2x-3=21-x

2x-x=21+3

x=24

TH2: 2x-3=-(21-x)

2x-3 = -21+x

2x-x=-21+3

x=-18

Vậy x \(\varepsilon\){-18;24}

23 tháng 9 2021

\(a,\Leftrightarrow-\dfrac{1}{2}x=\dfrac{1}{4}\Leftrightarrow x=-\dfrac{1}{2}\\ b,\Leftrightarrow\dfrac{1}{6}:x=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\Leftrightarrow x=\dfrac{1}{6}:\dfrac{5}{6}=\dfrac{1}{5}\\ c,\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=3\\x+\dfrac{1}{5}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}\\x=-\dfrac{16}{5}\end{matrix}\right.\)

\(d,\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{22}{9}-\dfrac{7}{3}=\dfrac{1}{9}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{3}\\x+\dfrac{1}{2}=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{6}\\x=-\dfrac{5}{6}\end{matrix}\right.\\ e,\Leftrightarrow2\left|x\right|=2-\dfrac{1}{2}=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{3}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

\(f,\Leftrightarrow\left|x+\dfrac{1}{2}\right|=1+\dfrac{1}{6}=\dfrac{7}{6}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{7}{6}\\x+\dfrac{1}{2}=-\dfrac{7}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

e: ta có: \(2\left|x\right|+\dfrac{1}{2}=2\)

\(\Leftrightarrow2\left|x\right|=\dfrac{3}{2}\)

\(\Leftrightarrow\left|x\right|=\dfrac{3}{4}\)

hay \(x\in\left\{\dfrac{3}{4};-\dfrac{3}{4}\right\}\)

8 tháng 8 2015

Vì (2x-1)^6=(2x-1)^8

(2x-1)^8-(2x-1)^6=0

(2x-1)^6[(2x-1)^2-1)]=0

th1 (2x-1)^6 suy ra 2x-1=0 suy ra x=1/2

th2 (2x-1)^2-1=0

(2x-1)^2=1

suy ra 2x-1 bằng 1;-1

th1 2x-1=1 suy ra x=1

2x-1=-1 suy ra x=0

26 tháng 5 2017

hay đấy nhưng tớ ko giải đâu

12 tháng 9 2021

a) \(A=\left|x-5\right|+\left|x-7\right|=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)

\(minA=2\Leftrightarrow\)\(7\ge x\ge5\)

b) \(B=\left|2x+1\right|+\left|2x-2\right|=\left|2x+1\right|+\left|2-2x\right|\ge\left|2x+1+2-2x\right|=\left|3\right|=3\)

\(minB=3\Leftrightarrow1\ge x\ge-\dfrac{1}{2}\)

12 tháng 9 2021

Mình cảm ơn ạ