\(2x^{2^{ }}-7x+5\) =0

2/ \(-5x^2-7x+12=0\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

bạn giải theo delta nha :) mình vd một câu đó

\(1.x^2-11x+30=0\)

\(\Delta=\left(-11\right)^2-4.1.30=1>0\)

Do đó pt có 2 nghiệm phân biệt là:

\(x_1=\frac{11+\sqrt{1}}{2}=6;x_2=\frac{11-\sqrt{1}}{2}=5\)

6 tháng 4 2020

cảm ơn bạn

6 tháng 4 2020

cảm ơn bạn

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

a) Ta có: \(3x^2-5x+2=0\)

\(\Leftrightarrow3x^2-3x-2x+2=0\)

\(\Leftrightarrow3x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{2}{3}\right\}\)

b) Ta có: \(7x^2-5x-2=0\)

\(\Leftrightarrow7x^2-7x+2x-2=0\)

\(\Leftrightarrow7x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{-2}{7}\right\}\)

c) Ta có: \(\left(x^2+x\right)^2+5\left(x^2+x\right)+6=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+2\left(x^2+x\right)+3\left(x^2+x\right)+6=0\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+2\right)+3\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x^2+x+2\right)\left(x^2+x+3\right)=0\)(1)

Ta có: \(x^2+x+2\)

\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall x\)

hay \(x^2+x+2\ne0\forall x\)(2)

Ta có: \(x^2+x+3\)

\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{11}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

hay \(x^2+x+3\ne0\forall x\)(3)

Từ (1), (2) và (3) suy ra \(x\in\varnothing\)

Vậy: Tập nghiệm \(S=\varnothing\)

d) Ta có: \(x-7\sqrt{x}-9=0\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\frac{7}{2}+\frac{49}{4}-\frac{49}{4}-\frac{36}{4}=0\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{7}{2}\right)^2=\frac{85}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\frac{7}{2}=\frac{\sqrt{85}}{2}\\\sqrt{x}-\frac{7}{2}=-\frac{\sqrt{85}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\frac{\sqrt{85}}{2}+\frac{7}{2}=\frac{\sqrt{85}+7}{2}\\\sqrt{x}=\frac{-\sqrt{85}}{2}+\frac{7}{2}=\frac{7-\sqrt{85}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\left(\frac{\sqrt{85}+7}{2}\right)^2=\frac{67+7\sqrt{85}}{2}\\x=\left(\frac{7-\sqrt{85}}{2}\right)^2=\frac{67-7\sqrt{85}}{2}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{\frac{67+7\sqrt{85}}{2};\frac{67-7\sqrt{85}}{2}\right\}\)

e) Ta có: \(x-5\sqrt{x}+4=0\)

\(\Leftrightarrow x-\sqrt{x}-4\sqrt{x}+4=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=16\end{matrix}\right.\)

Vậy: Tập nghiệm S={1;16}

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

a: \(\text{Δ}=\left(-5\right)^2-4\cdot3\cdot8=25-96< 0\)

Do đó: Phươbg trình vô nghiệm

b: \(\text{Δ}=\left(-3\right)^2-4\cdot15\cdot5=9-300< 0\)

Do đó: Phương trình vô nghiệm

c: \(\Leftrightarrow x^2-4x+4-3=0\)

\(\Leftrightarrow\left(x-2\right)^2=3\)

hay \(x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

d: \(\Leftrightarrow3x^2+6x+x+2=0\)

=>(x+2)(3x+1)=0

=>x=-2 hoặc x=-1/3