Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
HM,HN là tiếp tuyến
nên HM=HN
mà IM=IN
nên IH là trung trực của MN
=>IH vuông góc MN
b: QI=MI^2/IH=6^2/12=3cm
c: Xét (I) có
ΔMNA nội tiếp
MA là đường kính
Do đó: ΔMNA vuông tại N
=>NA vuông góc với NM
=>AN//HI
a: Bạn ghi lại đề nha bạn
b: ΔBAC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB=\sqrt{18^2-6.5^2}=\dfrac{7}{2}\sqrt{23}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH=\dfrac{281.75}{18}=\dfrac{1127}{72}\left(cm\right)\)
Xét ΔABC có HI//AC
nên \(\dfrac{HI}{AC}=\dfrac{BH}{BC}\)
=>\(\dfrac{HI}{6.5}=\dfrac{1127}{72}:18=\dfrac{1127}{1296}\)
=>\(HI\simeq5,65\left(cm\right)\)
ΔHAB vuông tại H có HI là đường cao
nên \(BI\cdot BA=BH^2\)
=>\(BI=\left(\dfrac{1127}{72}\right)^2:\dfrac{7}{2}\sqrt{23}=14,6\left(cm\right)\)
\(AI=AB-BI=3.5\sqrt{23}-14.6\simeq2,19\left(cm\right)\)
\(S_{AIHC}=\dfrac{1}{2}\left(HI+AC\right)\cdot AI\)
\(=\dfrac{1}{2}\cdot2.19\cdot\left(6.5+5.65\right)\simeq13,3\left(cm^2\right)\)
Khá phổ biến!
\(\sqrt{1+2016^2+\dfrac{2016^2}{2017^2}}+\dfrac{2016}{2017}=\sqrt{\left(2016+1\right)^2-2.2016+\dfrac{2016^2}{2017^2}}+\dfrac{2016}{2017}\) \(=\sqrt{2017^2-2.2016+\dfrac{2016^2}{2017^2}}+\dfrac{2016}{2017}=\sqrt{\left(2017-\dfrac{2016}{2017}\right)^2}+\dfrac{2016}{2017}\)
\(=2017-\dfrac{2016}{2017}+\dfrac{2016}{2017}=2017\)
I) Hình bạn tự vẽ nha
Ta có DY//BH ; YH//DB
=> DYHB hình bình hành => DY = HB
Tương tự được ZE = FC
mà \(\frac{BH}{BC}=1-\frac{HC}{BC}=1-\frac{1}{\sqrt{2}}\)\(\left(\Delta HIC\approx\Delta BAC;\frac{AB}{IH}=\sqrt{2}\right)\)(1)
Tương tự được \(\frac{FC}{BC}=1-\frac{BF}{BC}=1-\frac{1}{\sqrt{2}}\)(2)
Từ (1) ; (2) => BH = FC hay DY = ZE
-1+-2=-3
duyệt nha
3232
33
.
211.225458747
132
3
3
541324567