Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, <=> \(\left(4x\right)^2-\left(9y\right)^2\)=\(\left(4x-9y\right)\left(4x+9y\right)\)
1) \(16x^2-81.y^2=\left(4x\right)^2-\left(9.y\right)^2=\left(4x-9y\right)\left(4x+9y\right)\)
2) \(\left(5x-3y\right)^2-\left(3x-5y\right)^2=\left(5x-3y-3x+5y\right)\left(5x-3y+3x-5y\right)=\left(2x+2y\right).\left(8x-8y\right)\)
\(=16.\left(x+y\right)\left(x-y\right)\)
3)\(4x^2-y^2+4y-4=4x^2-\left(y^2-4y+4\right)=\left(2x\right)^2-\left(y-2\right)^2=\left(2x-y+2\right).\left(2x+y-2\right)\)
4)\(9.\left(x-y\right)^2-16.\left(2x+y\right)^2=3^2.\left(x-y\right)^2-4^2.\left(2x+y\right)^2=\left(3x-3y\right)^2-\left(8x+4y\right)^2\)
\(=\left(3x-3y-8x-4y\right)\left(3x-3y+8x+4y\right)=\left(-5x-7y\right).\left(11x+y\right)\)
a/ 4x^2 + 4x +1=(2x)2+2.2x.1+12=(2x+1)2=(2x+1)(2x+1)
c/ 81y^4 - 16x^6=(9y2)2-(4x3)2=(9y2+4x3)(9y2-4x3)
d/ 4x^2 + y^2 + z^2 + 4xy + 2yz + 4xz=[(2x)2+4xy+y2]+(4xz+2yz)+z2
=(2x+y)2+2z(2x+y)+z2
=(2x+y+z)2
=(2x+y+z)(2x+y+z)
a: =(6x)^2-(3x-2)^2
=(6x-3x+2)(6x+3x-2)
=(9x-2)(3x+2)
d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)
\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)
=8x(x^2+1)
e: =(4x)^2-2*4x*3y+(3y)^2
=(4x-3y)^2
f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)
\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)
g: =(4x)^3+1^3
=(4x+1)(16x^2-4x+1)
k: =x^3(27x^3-8)
=x^3(3x-2)(9x^2+6x+4)
l: =(x^3-y^3)(x^3+y^3)
=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)
Trả lời:
(đề bài là phân tích đa thức thành nhân tử đúng không bạn?)
1, \(16x^2-81y^4=\left(4x\right)^2-\left(9y^2\right)^2=\left(4x-9y^2\right)\left(4x+9y^2\right)\)
2, \(4-y^{\frac{6}{9}}=2^2-\left(y^{\frac{1}{3}}\right)^2=\left(2-y^{\frac{1}{3}}\right)\left(2+y^{\frac{1}{3}}\right)\)