K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

A = \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{4950}\)

A = \(2.\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\right)\)

A = \(2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

A = \(2.\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)

A = \(1-\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\)

~ Chúc bạn học giỏi ! ~

1 tháng 8 2017

\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{4950}\)

\(\Rightarrow2A=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\)

\(\Rightarrow2A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow2A=\dfrac{1}{2}-\dfrac{1}{100}\)

\(\Rightarrow A=1-\dfrac{1}{50}\)

\(\Rightarrow A=\dfrac{49}{50}\)

\(A=\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{9900}\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=2\cdot\dfrac{49}{100}=\dfrac{98}{100}>\dfrac{1}{4}\)

31 tháng 8 2020

\(1+\frac{1}{2}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{4950}=2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\right)\)

\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\left(1-\frac{1}{100}\right)=2.\frac{99}{100}=\frac{99}{50}\)

5 tháng 11 2017

các bạn giải cho mình nhé