Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
o: \(\dfrac{\left(-1\right)^6\cdot3^5\cdot4^3}{9^2\cdot2^5}=\dfrac{3^5\cdot2^6}{2^5\cdot3^4}=\dfrac{3^5}{3^4}\cdot\dfrac{2^6}{2^5}=3\cdot2=6\)
s: \(\dfrac{\dfrac{2}{7}+\dfrac{2}{5}+\dfrac{2}{17}-\dfrac{2}{25}}{\dfrac{3}{14}+\dfrac{3}{10}+\dfrac{3}{34}-\dfrac{3}{50}}\)
\(=\dfrac{2\left(\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{1}{17}-\dfrac{1}{25}\right)}{\dfrac{3}{2}\left(\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{1}{17}-\dfrac{1}{25}\right)}\)
\(=2:\dfrac{3}{2}=\dfrac{4}{3}\)
t: \(\sqrt{\dfrac{4}{9}}-\dfrac{1}{2}:\left|-\dfrac{2}{3}\right|\)
\(=\dfrac{2}{3}-\dfrac{1}{2}:\dfrac{2}{3}\)
\(=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8-9}{12}=-\dfrac{1}{12}\)
a) <=> (8-5x+x-2)(x+2) + 4(x^2-x-2)=0
<=> 6x +12 - 4x^2 - 8x +4x^2 -4x -8 =0
<=> -6x -4 = 0
<=> x= 4/6
1. \(\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^4=\left(-\frac{1}{2}\right)^5=-\frac{1}{32}\)
2. \(6.3^2-24:2^3=6.9-24:8=54-3=51\)
3. \(\left(\frac{1}{4}\right)^2.\left(\frac{1}{4}\right)^3=\left(\frac{1}{4}\right)^5=\frac{1}{1024}\)
1) (-1/2).(-1/2)^4 = ( -1/2)^ 5 = -1/32
2) 6.3^2 - 24:2^3 = 6,9 - 24 : 8 = 54 - 3 = 51
3) (1/4)^2 . (1/4)^3 = ( 1/4)^5 = 1/1024