K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

\(E=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).\left(1-\frac{1}{1+2+3+4}\right)+...+\left(1-\frac{1}{1+1+3+...+n}\right)\)

\(E=\frac{2}{\left(1+2\right).2:2}.\frac{5}{\left(1+3\right).3:2}.\frac{9}{\left(1+4\right).4:2}...\frac{\left(1+n\right).n:2-1}{\left(1+n\right).n:2}\)

\(E=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{2.\left[\left(1+n\right).n:2-1\right]}{n.\left(n+1\right)}\)

\(E=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\)

\(E=\frac{1.2.3...\left(n-1\right)}{2.3.4...n}.\frac{4.5.6...\left(n+2\right)}{3.4.5...\left(n+1\right)}\)

\(E=\frac{1}{n}.\frac{n+2}{3}=\frac{n+2}{3n}\)

\(\frac{E}{F}=\frac{n+2}{3n}:\frac{n+2}{n}=\frac{n+2}{3n}.\frac{n}{n+2}=\frac{1}{3}\)

 

4 tháng 9 2016

Ai đúng tôi tick cho

 

24 tháng 10 2019

a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n}\right)\\ =\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{n-1}{n}\\ =\frac{1}{n}\)

b) \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{n}\right)\\ =\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{n+1}{n}\\ =n+1\)

c) \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\\ =\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot...\cdot\frac{\left(n-1\right)\left(n+1\right)}{n^2}\\ =\frac{\left[1\cdot2\cdot3\cdot...\cdot\left(n-1\right)\right]\cdot\left[3\cdot4\cdot5\cdot...\cdot\left(n+1\right)\right]}{\left(2\cdot3\cdot4\cdot...\cdot n\right)\left(2\cdot3\cdot4\cdot...\cdot n\right)}\\ =\frac{n+1}{2n}\)

d) \(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)...\left(1+\frac{1}{99\cdot101}\right)\\ =\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot...\cdot\frac{10000}{99\cdot101}\\ =\frac{2^2\cdot3^2\cdot...\cdot100^2}{1\cdot3\cdot2\cdot4\cdot...\cdot99\cdot101}\\ =\frac{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot99\right)\left(3\cdot4\cdot...\cdot101\right)}\\ =\frac{2\cdot100}{101}\\ =\frac{200}{101}\)

15 tháng 10

tôi mới học lớp 6 mà mấy bạn cho bài khó qus

Đề bài yêu cầu gì?

6 tháng 12 2017

Ta có:

\(A=(1-\frac{1}{1+2})(1-\frac{1}{1+2+3})(1-\frac{1}{1+2+3+4}) ...(1-\frac{1}{1+2+3+...+n}) \)

Xét công thức tổng quát ta có:

\(1-\frac{1}{1+2+3+...+n}=\frac{2+3+...n.}{1+2+3+..+n} =\frac{n(n+1)-2}{2}:\frac{n(n+1)}{2}=\frac{(n+2)(n-1)}{n(n+1)} \)

Áp dụng ct tổng quá ta có:

A=\(\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{(n-1)(n+2)}{n(n+1)} \)=\(\frac{(1.2.3...(n-1))(4.5.6...(n+2))}{(2.3.4...n)(3.4.5...(n+1))} \)=\(\frac{n+2}{3n} \)

=>A:B=\(\frac{n+2}{3n}:\frac{n+2}{n}=\frac{1}{3} \)

24 tháng 5 2020

Đặt \(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.........+\frac{1}{1+2+....+n}\)

Ta có: \(1+2=\frac{2.3}{2}\)\(1+2+3=\frac{3.4}{2}\)\(1+2+3+4=\frac{4.5}{2}\); .......... ; \(1+2+.......+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow A=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+.......+\frac{1}{\frac{n\left(n+1\right)}{2}}\)

\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.......+\frac{2}{n\left(n+1\right)}\)

\(=1+2.\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{n\left(n+1\right)}\right]\)

\(=1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+........+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=1+2.\left(\frac{1}{2}-\frac{1}{n+1}\right)=1+1-\frac{2}{n+1}=2-\frac{2}{n+1}\)

Để A có GTNN thì \(\frac{2}{n+1}\)phải có GTLN \(\Rightarrow n+1\)phải có GTNN

mà \(n>1\)\(\Rightarrow n+1>2\)\(\Rightarrow min\left(n+1\right)=3\)\(\Leftrightarrow n=2\)

\(\Rightarrow A=2-\frac{2}{1+2}=2-\frac{2}{3}=\frac{4}{3}\)

Vậy \(minA=\frac{4}{3}\Leftrightarrow n=2\)