Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-...-\frac{1}{1000000}\)
B = \(-\left(\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^6}\right)\)
Đặt A = \(\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^6}\)
10A = \(1+\frac{1}{10}+\frac{1}{10^2}+...+\frac{1}{10^5}\)
9A = 10A - A = \(1-\frac{1}{10^6}\)
=> A = \(\frac{1-\frac{1}{10^6}}{9}\)
=> B = \(-\left(\frac{1-\frac{1}{10^6}}{9}\right)\)
C=(0,1+0,01+0,001+...+0,000001)=-0,111111
mình ko chép đề bài
=-(0,1+0,01+0,001+0,0001+0,00001)
=-0,11111
Đây là cách đơn giản nhất
Tìm giá trị nhỏ nhất của các biểu thức -4|2.8-s|và 11/5-|s+9|
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
A=Số thừa số của (-1) là:1+2+3+4+5+...+100=(1+100).100:2=5050
do 5050 là số chẵn => A=1
a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)
b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)
c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)
\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)
a, Điều đương nhiên
b,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{999.1000}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{999}-\frac{1}{1000}\)
= \(1-\frac{1}{1000}\)
= \(\frac{999}{1000}\)
\(-1-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}\)
\(=-\frac{10000}{10000}-\frac{1000}{10000}-\frac{100}{10000}-\frac{10}{10000}-\frac{1}{10000}\)
\(=\frac{-10000-1000-100-10-1}{10000}\)
\(=-\frac{11111}{10000}=-1,1111\)
\(=-\left(1+\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\frac{1}{10000}\right)\)
\(=-\left(\frac{10000}{10000}+\frac{1000}{10000}+\frac{100}{10000}+\frac{1}{10000}\right)\)
\(=-\left(\frac{10000+1000+100+10+1}{10000}\right)\)
\(=-\left(\frac{11111}{10000}\right)\)
Vậy.....
tôi không biết làm mong các bạn giúp mình
tôi rất nguuuuuuuuuuuuuuuuuuu và ăn hạiiiiiiiiiiiiiiiiiiiiiiiii
Sao khó thế tui mới lớp 3 mè :))))