Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(-\dfrac{1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{9}{4}-\dfrac{1}{3}+1}}{\dfrac{1}{4}+\dfrac{5}{4}-\dfrac{13}{10}}-\dfrac{\dfrac{1}{4}-\dfrac{2}{3}+\dfrac{2}{5}}{\dfrac{3}{5}-\dfrac{2}{3}\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{35}{12}}}{\dfrac{1}{5}}-\dfrac{-\dfrac{1}{60}}{\dfrac{11}{10}}\)
\(A=\dfrac{5\sqrt{105}}{6}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}}{66}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}+11}{66}\)
\(B=\frac{1}{3}-\frac{3}{4}+0,6+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow B=\frac{3}{15}-\frac{48}{64}+\frac{9}{15}+\frac{1}{64}-\frac{8}{36}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow B=\frac{3}{15}+\frac{9}{15}+\frac{1}{15}+\left(-\frac{48}{64}+\frac{1}{64}\right)+\left(-\frac{8}{36}-\frac{1}{36}\right)\)
\(\Rightarrow B=\frac{13}{15}-\frac{47}{64}-\frac{1}{4}\)
\(\Rightarrow B=-\frac{113}{960}\)
\(C=0\)
\(D=\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow D=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)
\(\Rightarrow D=1\)
D= \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}......-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{98}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\left[1-(\frac{1}{2}-\frac{1}{2}+......+\frac{1}{98}-\frac{1}{99})\right]\)
=\(\frac{1}{99}-\left(1-0-0-.....-0-\frac{1}{99}\right)\)
=\(\frac{1}{99}-1-\frac{1}{99}\)
=1
a) \(\left(-\dfrac{2}{3}+\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)
\(=\left(-\dfrac{5}{21}\right):\dfrac{4}{5}+\left(\dfrac{5}{21}\right):\dfrac{4}{5}\)
\(=\left(-\dfrac{5}{21}+\dfrac{5}{21}\right):\dfrac{4}{5}\)
\(=0:\dfrac{4}{5}\)
\(=0\)
b) \(\dfrac{5}{9}:\left(\dfrac{1}{11}-\dfrac{5}{22}\right)+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{2}{3}\right)\)
\(=\dfrac{5}{9}:\left(-\dfrac{3}{22}\right)+\dfrac{5}{9}:\left(-\dfrac{3}{5}\right)\)
\(=\dfrac{5}{9}:\left[\left(-\dfrac{3}{22}\right)+\left(-\dfrac{3}{5}\right)\right]\)
\(=\dfrac{5}{9}:\left(-\dfrac{81}{110}\right)\)
\(=-\dfrac{550}{729}\)
c) \(4^2.4^3:4^{10}\)
\(=\dfrac{4^5}{4^{10}}\)
\(=\dfrac{1}{4^5}\)
\(=\dfrac{1}{256}\)
d) \(\left(0,6\right)^5:\left(0,2\right)^6\)
\(=\dfrac{\left(0,2\cdot3\right)^5}{\left(0,2\right)^6}\)
\(=\dfrac{\left(0,2\right)^5\cdot3^5}{\left(0,2\right)^6}\)
\(=\dfrac{243}{0,2}\)
\(=1215\)
Mai mốt bạn đăng một lần ít thôi nha tại giờ khuya quá nên mình chỉ làm đến đây thôi =))
\(\left(-0,6\cdot x-\frac{1}{2}\right)\cdot\frac{3}{4}-9-\left(-1\right)=\frac{1}{3}\)
\(\left(-0,6\cdot x-\frac{1}{2}\right)\cdot\frac{3}{4}-10=\frac{1}{3}\)
\(\left(-0,6\cdot x-\frac{1}{2}\right)\cdot\frac{3}{4}=\frac{31}{3}\)
\(-0,6\cdot x-\frac{1}{2}=\frac{124}{9}\)
\(-0,6\cdot x=\frac{257}{18}\)
\(x=\frac{1285}{54}\)
\(\left(-0,6.x-\frac{1}{2}\right).\frac{3}{4}-9-\left(-1\right)=\frac{1}{3}\)
\(\frac{-9}{20}x-\frac{3}{8}-\left(9-1\right)=\frac{1}{3}\)
\(\frac{-9}{20}x-\frac{3}{8}-8=\frac{1}{3}\)
\(\frac{-9}{20}x-\left(\frac{3}{8}+8\right)=\frac{1}{3}\)
\(\frac{-9}{20}x-\frac{67}{8}=\frac{1}{3}\)
\(\frac{-9}{20}x=\frac{1}{3}+\frac{67}{8}\)
\(\frac{-9}{20}x=\frac{8}{24}+\frac{201}{24}\)
\(\frac{-9}{20}x=\frac{209}{24}\)
\(x=\frac{209}{24}.\frac{-20}{9}\)
\(x=\frac{-1045}{54}\)