K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

Cách làm như trên là không sai, tuy nhiên để chặt chẽ hơn bạn có thể làm như thế này:

Ta có:\(\left\{{}\begin{matrix}4a>4b\\-2>-3\end{matrix}\right.\), cộng 2 vế của bất phương trình ta được \(4a-2>4b-3\left(ĐPCM\right)\)

5 tháng 12 2017

\(a=\dfrac{1}{10}\)

\(b=\dfrac{1}{20}\)

5 tháng 12 2017

cách giải bạn ơi

5 tháng 12 2017

3a+4b=0,5

<=> 174a+232b = 29

Mà 160a+232b = 27,6

=> 174a+232a-160a-232b = 29-27,6

<=> 14a = 1,4

<=> a = 1,4 : 14 = 0,1 

<=> b = 0,05

k mk nha

6 tháng 6 2020

a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )

\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )

Biến đổi VP 

\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)

\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )

b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)

<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )

Biến đổi VT của ( * ) ta có :

\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)

\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )

\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)

\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng 

=> Hằng đẳng thức đúng 

18 tháng 9 2018

a) \(\left(4n^2-6nm+9m^2\right)\left(2n+3m\right)\)

\(=\left(2n+3m\right)\left[\left(2n\right)^2-2n.3m+\left(3m\right)^2\right]\)

\(=\left(2n\right)^3+\left(3m\right)^3\)

\(=8n^3+27m^3\)

b) Sửa đề \(\left(7+2b\right)\left(4b^2-14b+49\right)\)

\(=\left(7+2b\right)\left[\left(2b\right)^2-2b.7+7^2\right]\)

\(=7^3+\left(2b\right)^3\)

\(=343+8b^3\)

c) \(\left(25a^2+10ab+4b^2\right)\left(5a-2b\right)\)

\(=\left(5a-2b\right)\left[\left(5a\right)^2+5a.2b+\left(2b\right)^2\right]\)

\(=\left(5a\right)^3-\left(2b\right)^3\)

\(=125a^3-8b^3\)

d) \(\left(x^2+x+2\right)\left(x^2-x-2\right)\)

\(=\left[x^2+\left(x+2\right)\right]\left[x^2-\left(x+2\right)\right]\)

\(=x^4-\left(x+2\right)^2\)

21 tháng 9 2021

\(\cdot a-4b=5\Leftrightarrow\left(a-4b\right)^2=a^2-8ab+16b^2=25\Leftrightarrow a^2+16b^2=25+8\cdot\left(-\dfrac{3}{2}\right)=13\\ \cdot a-4b=5\Leftrightarrow4b-a=-5\)

\(a,A=ab\left(4b-a\right)=-\dfrac{3}{2}\cdot\left(-5\right)=\dfrac{15}{2}\)

\(b,B=a^2+16b^2=13\left(cm.trên\right)\)

\(c,D=a+4b\)

Ta có \(\left(a+4b\right)^2=a^2+8ab+16b^2=13+8\cdot\left(-\dfrac{3}{2}\right)=1\)

\(\Rightarrow D=a+4b=1\)

23 tháng 1 2017

a3-4a2b-4b3+5ab2=0

==>(a-b)3 - b (a-b)2 =0

==>a-b = b ==> a=2b

thay a=2b vào biểu thức ta đc kết quả bằng 1

7 tháng 3 2017

hình như mấy cái GP của Đinh Tuấn Việt là giả hay sao ấy nhỉ

NV
23 tháng 12 2022

\(3x^3-6x^3y+3xy=3x\left(x^2-2x^2y+y\right)\)

\(a^2-4ab+4b^2-16=\left(a-2b\right)^2-4^2=\left(a-2b-4\right)\left(a-2b+4\right)\)