Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(\dfrac{-1}{3}:\dfrac{-2}{3}\right)^3+\left(\dfrac{4}{21}\cdot\dfrac{21}{4}\right)^{50}+0.01\)
\(=\left(\dfrac{1}{2}\right)^3+1^{50}+0.01=0.125+1+0.01=1.135\)
b: \(=x:y+\left(\dfrac{2x}{y}\right)^2-11x+12x-12y\)
\(=\dfrac{x}{y}+\dfrac{4x^2}{y^2}+x-12y\)
\(=\dfrac{x^2+4x^2+xy^2-12y^3}{y^2}=\dfrac{5x^2+xy^2-12y^3}{y^2}\)
b)Ta có:
\(17^{20}=17^{4.5}=\left(17^4\right)^5=83521^5>71^5\)
c)Ta có:
\(0,3^{20}=\left(0,3^2\right)^{10}=0,09^{10}< 0,1^{10}\)
d)Ta có:
\(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2}\right)^{40}\)
\(\left(\frac{1}{8}\right)^{13}=\left(\frac{1}{2}\right)^{39}\)
Vì \(\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{2}\right)^{39}\)
nên \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{8}\right)^{13}\)
e)Ta có:
\(3^{21}=3^{20}.3=9^{10}.3\)
\(2^{31}=2^{30}.2=8^{10}.2\)
Vì \(9^{10}.3>8^{10}.2\)
\(\Rightarrow3^{21}>2^{31}\)
\(\left(0,1\right)^4.\left(0,1\right)^2.10^4\)
\(=\frac{1}{10^4}.10^4.\frac{1}{10^2}\)
\(=1.\frac{1}{100}=\frac{1}{100}\)
Ta có :
(0,1)4 x (0,1)2 x 104
=( 0,1 x 10)4 x 0,01
= 14 x 0,01
= 0,01
a,(-0,1)2.(-0,1)3=0,01.(-0,001)
=-0,00001
b,1252:253=(53)2:(52)3
=56:56=1
c,\(\left(7^3\right)^2:\left(7^2\right)^3=7^6:7^6=1\)
d,\(\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{\left(2.3\right)^6.\left(2^5\right)^3}=\dfrac{3^6.2^{15}}{2^6.3^6.2^{15}}=\dfrac{3^6.2^{15}}{3^6.2^{21}}\)
\(\dfrac{1}{2^6}=\dfrac{1}{64}\)
a)\(\left(-0,1\right)^2.\left(-0,1\right)^3=\left(-0,1\right)^5\)
b) \(125^2:25^3=\left(5^3\right)^2:\left(5^2\right)^3=5^6:5^6=1\)
c) \(\left(7^3\right)^2:\left(7^2\right)^3=7^6:7^6=1\)
d) \(\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{\left(2.3\right)^6.\left(2^5\right)^3}=\dfrac{3^6.2^{15}}{2^6.3^6.2^{15}}=\dfrac{1}{2^6}=\dfrac{1}{64}\)
a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)
\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)
Từ (1) và (2) \(\Rightarrow A< B\)
Vậy \(A< B.\)
b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)
\(A=\left(0,1\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)
\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
d) \(A=102^7=102^6.102\)(1)
\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)
\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)
Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)
Vậy \(A>B.\)
f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)
\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
a, ta có A=2^24=64^4
B=3^16=81^4
Vì 64^4<81^4
Vậy 2^24<3^36
b, ta có A=0,1^15
B=0,3^30=0,09^15
Vì 0,1^15< 0,09^15
Vậy 0,1^15<0,3^30
a) Ta có: 1020= (102)10=10010>9010
\(\Rightarrow\)1020>9010
b) Ta có: (-5)30 = (-53)10 =(-125)10
và (-3)50 = (-35)10 = (-243)10
Mà (-125)10 < (-243)10 => (-5)10 < (-3)50
c)- 0,320=(0,32)10=0,0910.
Do 0,09<0,1 =>0,0910<0,110.
=>0,110>0,320.
d) Ta có : \(\left(\dfrac{1}{16}\right)^{10}=\left(\dfrac{1}{2^4}\right)^{10}=\dfrac{1}{2^{40}}\)
\(\left(\dfrac{1}{2}\right)^{50}=\dfrac{1}{2^{50}}\)
Vì \(2^{40}< 2^{50}\Rightarrow\dfrac{1}{2^{40}}>\dfrac{1}{2^{50}}\Rightarrow\left(\dfrac{1}{16}\right)^{10}>\left(\dfrac{1}{2}\right)^{50}\)
Lời giải:
1.
\((-2x^4y^3z^7)^2(\frac{1}{4}xy^5)(-3x^2yz)^3(\frac{-1}{27}x^3yz^2)\)
\(=(4x^8y^6z^{14})(\frac{1}{4}xy^5)(-27x^6y^3z^3)(-\frac{1}{27}x^3yz^2)\)
\(=(4.\frac{1}{4}.-27.\frac{-1}{27})(x^8.x.x^6.x^3)(y^6.y^5.y^3.y)(z^{14}.z^3.z^2)\)
\(=x^{18}.y^{15}.z^{19}\)
2.
\(=(\frac{-1}{3}.\frac{4}{5}.\frac{-27}{10})(x.x^5.x^2)(y^2.y^6.y)(z.z.z^4)\)
\(=\frac{18}{25}.x^8.y^9.z^6\)
3.
\(=(49.x^{10}y^2z^4)(\frac{-1}{4}.x^3yz^7)(\frac{8}{21}x^5z^4)\)
\(=(49.\frac{-1}{4}.\frac{8}{21})(x^{10}.x^3.x^5)(y^2.y)(z^4.z^7.z^4)\)
\(=\frac{-14}{3}.x^{18}.y^3.z^{15}\)
4.
\(=(\frac{-1}{64}.x^8.y^9.z^{12})(4x^2y^2z^4)(\frac{-5}{3}x^4yz)\)
\(=(\frac{-1}{64}.4.\frac{-5}{3})(x^8.x^2.x^4)(y^9.y^2.y)(z^{12}.z^4.z)\)
\(=\frac{5}{48}.x^{14}.y^{12}.z^{17}\)
5.
\(=(\frac{1}{16}.x^8.y^4z^2)(-8xyz^2).(-\frac{1}{2}x^4yz)\)
\(=(\frac{1}{16}.-8.\frac{-1}{2})(x^8.x.x^4)(y^4.y.y)(z^2.z^2.z)\)
\(=\frac{1}{4}.x^{13}.y^6.z^5\)
1.
\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)
\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)
\(=2x^5y^4-4x^2y^3\)
2.
\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)
\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)
\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)
3.
\(5x-7xy^2+3x-\frac{1}{2}xy^2\)
\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)
\(=8x-\frac{15}{2}xy^2\)
4.
\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)
\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)
\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)
5.
\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)
\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)
\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)
6.
\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)
\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)
= ( 0,1) ^ 4.2
=( 0,1) ^ 8
Chúc bạn học tốt...