K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 giờ trước (22:22)

Bài 3:

a: \(\left(2x+1\right)\left(x^2+2\right)=0\)

\(x^2+2\ge2>0\forall x\)

nên 2x+1=0

=>2x=-1

=>\(x=-\frac12\)

b: \(\left(x^2+4\right)\left(7x-3\right)=0\)

\(x^2+4\ge4>0\forall x\)

nên 7x-3=0

=>7x=3

=>\(x=\frac37\)

c: \(\left(x^2+x+1\right)\left(6-2x\right)=0\)

\(x^2+x+1=x^2+x+\frac14+\frac34=\left(x+\frac12\right)^2+\frac34\ge\frac34>0\forall x\)

nên 6-2x=0

=>2x=6

=>x=3

d: \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)

\(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\)

nên 8x-4=0

=>8x=4

=>\(x=\frac48=\frac12\)

Bài 4:

a: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)

=>(x-2)(3x+5)=(x-2)(2x+2)

=>(x-2)(3x+5-2x-2)=0

=>(x-2)(x+3)=0

=>\(\left[\begin{array}{l}x-2=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\\ x=-3\end{array}\right.\)

b: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

=>(2x+5)(x-4)-(x-5)(4-x)=0

=>(2x+5)(x-4)+(x-5)(x-4)=0

=>(x-4)(2x+5+x-5)=0

=>3x(x-4)=0

=>x(x-4)=0

=>\(\left[\begin{array}{l}x=0\\ x-4=0\end{array}\right.=>\left[\begin{array}{l}x=0\\ x=4\end{array}\right.\)

c: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

=>(3x+1)(3x-1)=(3x+1)(2x-3)

=>(3x+1)(3x-1)-(3x+1)(2x-3)=0

=>(3x+1)(3x-1-2x+3)=0

=>(3x+1)(x+2)=0

=>\(\left[\begin{array}{l}3x+1=0\\ x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac13\\ x=-2\end{array}\right.\)

d: \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

=>\(2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)

=>\(\left(3x+1\right)\left(6x+2-x+2\right)=0\)

=>(3x+1)(5x+4)=0

=>\(\left[\begin{array}{l}3x+1=0\\ 5x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac13\\ x=-\frac45\end{array}\right.\)

e: \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)

=>\(27x^2\left(x+3\right)-12x\left(x+3\right)=0\)

=>3x(x+3)(9x-4)=0

=>x(x+3)(9x-4)=0

=>\(\left[\begin{array}{l}x=0\\ x+3=0\\ 9x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-3\\ x=\frac49\end{array}\right.\)

f: \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)

=>\(\left(4x-1\right)^2=\left(4x+12\right)\left(4x-1\right)\)

=>(4x+12)(4x-1)-\(\left(4x-1\right)^2=0\)

=>(4x-1)(4x+12-4x+1)=0

=>13(4x-1)=0

=>4x-1=0

=>4x=1

=>\(x=\frac14\)

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)

=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)

=>Hệ vô nghiệm

b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)

=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)

=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)

c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)

=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)

d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)

=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)

=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)

S
9 tháng 9

\(a.\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Leftrightarrow\begin{cases}6x-4y=7\left(1\right)\\ -6x+4y=-9\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

0x + 0y = -2

vậy phương trình trên vô nghiệm

\(b.\begin{cases}2x-4y=9\\ -3x-6y=-27\end{cases}\Leftrightarrow\begin{cases}6x-12y=27\left(1\right)\\ -6x-12y=-54\left(2\right)\end{cases}\)

lấy (1) - (2) ta được:

12x = 81

⇒ x = 81 : 12 = 6,75

thay x = 6,75 vào (1) ta được:

\(6\cdot6,75-12y=27\)

40,5 - 12y = 27

12y = 40,5 - 27

12y = 13,5

y = 13,5 : 12 = 1,125

kết luận: (x; y) = (6,75; 1,125)

\(c.\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Leftrightarrow\begin{cases}10x+2y=6\left(1\right)\\ 4x-2y=9\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

14x = 15

x = 15 : 14 = \(\frac{15}{14}\) (3)

thay (3) vào (1) ta được:

\(10\cdot\frac{15}{14}+2y=6\)

\(\frac{75}{7}+2y=6\)

\(2y=6-\frac{75}{7}\)

\(2y=-\frac{33}{7}\)

\(y=-\frac{33}{7}:2=-\frac{33}{7}\cdot\frac12=-\frac{33}{14}\)

kết luận: \(\left(x;y\right)=\left(\frac{15}{14};-\frac{33}{14}\right)\)

\(d.\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Leftrightarrow\begin{cases}4x-6y=-10\left(1\right)\\ -4x+6y=10\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

0x + 0y = 0

vậy hệ có vô số nghiệm