loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
17 tháng 8 2023

- Các điểm dao động với biên độ cực đại là bụng sóng.

- Các điểm không dao động (đứng yên) là nút sóng.

19 tháng 8

a. Dựa vào đồ thị ta có:

Chu kì \(T = 2 s\), suy ra tần số góc \(\omega = \frac{2 \pi}{T} = \frac{2 \pi}{2} = \pi\) rad/s

Vận tốc cực đại của dao động: \(\text{v}_{m a x} = \omega A\)

\(\Rightarrow A = \frac{\text{v}_{m a x}}{\omega} = \frac{4}{\pi}\) cm

Thời điểm \(t = 0\), vật có \(\text{v} = \text{v}_{m a x}\), suy ra vật ở VTCB và \(\text{v} > 0\)

Khi đó: \(x = 0 \Rightarrow cos ⁡ \varphi = 0 \Rightarrow \varphi = - \frac{\pi}{2}\)

Phương trình của vận tốc có dạng: \(\text{v} = \omega A cos ⁡ \left(\right. \omega t + \varphi + \frac{\pi}{2} \left.\right)\)

\(\Rightarrow \text{v} = 4 cos ⁡ \left(\right. \pi t - \frac{\pi}{2} + \frac{\pi}{2} \left.\right) = 4 cos ⁡ \left(\right. \pi t \left.\right)\) (cm/s)

b. Phương trình dao động điều hòa có dạng: \(x = A cos ⁡ \left(\right. \omega t + \varphi \left.\right)\)

\(\Rightarrow x = \frac{4}{\pi} cos ⁡ \left(\right. \pi t - \frac{\pi}{2} \left.\right)\) (cm)

Phương trình của gia tốc có dạng: \(a = \omega^{2} A cos ⁡ \left(\right. \omega t + \varphi + \pi \left.\right)\)

\(\Rightarrow a = \pi^{2} . \frac{4}{\pi} cos ⁡ \left(\right. \pi t - \frac{\pi}{2} + \pi \left.\right) = 4 \pi cos ⁡ \left(\right. \pi t + \frac{\pi}{2} \left.\right)\) (cm/s2)

20 tháng 11 2017

thay số vào là đc nhé bn

https://hoc24.vn/hoi-dap/question/18066.html

20 tháng 10 2016

quá là cơ bản

th1 U1=U3=R13/Rab*Uab=1/3*12=4(v)=>U2=U4=12-4=8(v)

th2 kết quả như th1

15 tháng 11 2016

U(MN)=U(MA)+U(AN)=-U1(do M->N đi từ cực dương quay về âm nên U(MA)=-U1)+U2

 

15 tháng 11 2016

trên giải thích sai nên minh giải thích lại: m->n đi theo chiều âm về dương nên u(ma)=u1

 

28 tháng 10 2017

khi đ1 và đ2 sáng bt thì

I = I đm = I1đm + I2đm ( 2 cái I này bạn tính ở từng đèn )

\(\dfrac{U}{R_{tđ}}\)= I đm = I1đm + I2đm

\(\dfrac{U}{R_1+\dfrac{R_{đ2}.R_{đ1}}{R_{đ2}+R_{đ1}}}\) = I1đm + I2đm

thế số vô => R1