">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 5 2024

Với mọi a;b;c ta có

\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge2\left(a+b+c\right)-3\) (1)

Lại có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow6a^2+6b^2+6c^2\ge6ab+6bc+6ca\) (2)

Cộng vế (1) và (2):

\(7\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+3ab+3bc+3ca\right)-3=2.12-3=21\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

5 tháng 5 2019

Đề bài bạn ey

2 tháng 5 2018

đề như sh*t

bài này dễ mà bạn

Cho đoạn thẳng AB,đường trung trực của đoạn thẳng AB cắt AB tại I,Trên đường thẳng d lấy các điểm M N tùy ý,Chứng minh tam giác MNA = tam giác MNB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Cho đoạn thẳng AB,đường trung trực của đoạn thẳng AB cắt AB tại I,Trên đường thẳng d lấy các điểm M N tùy ý,Chứng minh tam giác MNA = tam giác MNB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

23 tháng 9 2018

bạn có thể ghi đề bài ko đẻ z ai mak biết

nhớ k 

thanks nhìu

23 tháng 9 2018

có hình mà nó k hiện ra

11 tháng 7 2017

Giải hệ phương trình,(x + 2)(x - y + 1) = 2 và 3x^2 - 3xy + x + 2y = 4,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

AI XEM RỒI NHỚ CHẤM ĐIỂM

11 tháng 7 2017

Trình bày xấu chưa từng thấy

Đề bài đâu bạn:

Với mik cx ko bít giải phương trình đâu

Hihi

:3))

11 tháng 4 2018

Đề bài đâu e

DD
15 tháng 5 2021

1) \(2x-\left|6x-7\right|=-x+8\)

\(\Rightarrow\orbr{\begin{cases}2x-\left(6x-7\right)=-x+8\\2x-\left(-6x+7\right)=-x+8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-3x=1\\9x=15\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=\frac{5}{3}\end{cases}}\)

Thử lại đều không thỏa mãn. 

Vậy phương trình vô nghiệm. 

2) \(\frac{\left|x+2\right|}{2}-\frac{\left|x-1\right|}{3}=\frac{1}{4}+\frac{x+3}{6}\)(2)

Với \(x\ge1\): (2) tương đương với: 

\(\frac{x+2}{2}-\frac{x-1}{3}=\frac{1}{4}+\frac{x+3}{6}\)

\(\Leftrightarrow0x=-\frac{7}{12}\)(phương trình vô nghiệm) 

Với \(-2\le x< 1\): (2) tương đương với: 

\(\frac{x+2}{2}-\frac{1-x}{3}=\frac{1}{4}+\frac{x+3}{6}\)

\(\Leftrightarrow\frac{2}{3}x=\frac{1}{12}\Leftrightarrow x=\frac{1}{8}\)(thỏa mãn) 

Với \(x< -2\): (2) tương đương với: 

\(\frac{-x-2}{2}-\frac{1-x}{3}=\frac{1}{4}+\frac{x+3}{6}\)

\(\Leftrightarrow\frac{-1}{3}x=\frac{25}{12}\Leftrightarrow x=-\frac{25}{4}\)(thỏa mãn) 

DD
15 tháng 5 2021

3) \(\left|x^2-2x\right|=x\)

\(\Rightarrow\orbr{\begin{cases}x^2-2x=x\\x^2-2x=-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3x=0\\x^2-x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0,x=3\\x=0,x=1\end{cases}}\)

Thử lại đều thỏa mãn. 

4) \(\left|x^2-4x+5\right|=x^2-1\)

\(\Leftrightarrow x^2-4x+5=x^2-1\)(vì \(x^2-4x+5=\left(x-2\right)^2+1>0\))

\(\Leftrightarrow-4x=-6\)

\(\Leftrightarrow x=\frac{3}{2}\)