loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 3 2024

Do \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-1}{x^2-3x+2}=1\) hữu hạn nên \(f\left(x\right)-1=0\) có nghiệm \(x=1\)

\(\Rightarrow f\left(1\right)=1\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-\sqrt{2-f\left(x\right)}}{1-x^2}=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-1+1-\sqrt{2-f\left(x\right)}}{1-x^2}\)

\(=\lim\limits_{x\rightarrow1}\left(\dfrac{f\left(x\right)-1}{x^2-3x+2}.\dfrac{2-x}{x+1}+\dfrac{f\left(x\right)-1}{x^2-3x+2}.\dfrac{2-x}{\left(x+1\right)\left(1+\sqrt{2-f\left(x\right)}\right)}\right)\)

\(=1.\dfrac{2-1}{1+1}+1.\dfrac{2-1}{\left(1+1\right).\left(1+\sqrt{2-f\left(1\right)}\right)}=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{3}{4}\)

Cách 2: \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-1}{x^2-3x+2}=1\Rightarrow\) chọn \(f\left(x\right)=2-x\)

Khi đó:

\(\lim\limits_{x\rightarrow1}\dfrac{2-x-\sqrt{x}}{1-x^2}=\dfrac{3}{4}\)

bạn hãy ghi rõ câu hỏi ạ

Em chưa học ạ

 

9 tháng 1 2024

Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:

p=O'A'OA=22=1�=�'�'��=22=1;

q=O'B'OB=13�=�'�'��=13;

r=O'C'OC=46=23�=�'�'��=46=23.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)

Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng lớn (dần tới \( + \infty \)).

b)

Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng bé (dần tới \( - \infty \)).

P
Phong
CTVHS
9 tháng 1 2024

11 tháng 4 2024

loading... loading... 

NV
14 tháng 4 2022

Bạn cần bài nào trong mấy bài này nhỉ?

NV
17 tháng 4 2022

1.

\(u_{n+1}=4u_n+3.4^n\)

\(\Leftrightarrow u_{n+1}-\dfrac{3}{4}\left(n+1\right).4^{n+1}=4\left[u_n-\dfrac{3}{4}n.4^n\right]\)

Đặt \(u_n-\dfrac{3}{4}n.4^n=v_n\Rightarrow\left\{{}\begin{matrix}v_1=2-\dfrac{3}{4}.4=-1\\v_{n+1}=4v_n\end{matrix}\right.\)

\(\Rightarrow v_n=-1.4^{n-1}\)

\(\Rightarrow u_n=\dfrac{3}{4}n.4^n-4^{n-1}=\left(3n-1\right)4^{n-1}\)

NV
17 tháng 4 2022

2.

\(a_n=\dfrac{a_{n-1}}{2n.a_{n-1}+1}\Rightarrow\dfrac{1}{a_n}=2n+\dfrac{1}{a_{n-1}}\)

\(\Leftrightarrow\dfrac{1}{a_n}-n^2-n=\dfrac{1}{a_{n-1}}-\left(n-1\right)^2-\left(n-1\right)\)

Đặt \(\dfrac{1}{a_n}-n^2-n=b_n\Rightarrow\left\{{}\begin{matrix}b_1=2-1-1=0\\b_n=b_{n-1}=...=b_1=0\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a_n}=n^2+n\Rightarrow a_n=\dfrac{1}{n^2+n}\)