Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
Tương tự: \(\left\{{}\begin{matrix}SA\perp CD\\AD\perp CD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp SD\)
\(\left\{{}\begin{matrix}SA\perp BD\\AC\perp BD\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)
b.
Do M, N là trung điểm SB, SD \(\Rightarrow\) MN là đường trung bình tam giác SBD
\(\Rightarrow MN||BD\)
Mà \(BD\perp\left(SAC\right)\) (cmt) \(\Rightarrow MN\perp\left(SAC\right)\)
c.
K là trung điểm SA, M là trung điểm SB \(\Rightarrow KM\) là đường trung bình tam giác SAB
\(\Rightarrow KM||AB\)
Mà \(SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\Rightarrow SA\perp KM\) (1)
Hoàn toàn tương tự ta có \(SA\perp KN\) (2)
(1); (2) \(\Rightarrow SA\perp\left(KMN\right)\)
d.
Từ A kẻ \(AH\perp SO\)
Do \(BD\perp\left(SAC\right)\) (cmt) \(\Rightarrow BD\perp AH\)
\(\Rightarrow AH\perp\left(SBD\right)\)
\(\Rightarrow AH=d\left(A;\left(SBD\right)\right)\)
\(SA=\sqrt{SB^2-AB^2}=2a\)
\(AC=a\sqrt{2}\Rightarrow AO=\dfrac{a\sqrt{2}}{2}\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AO^2}\Rightarrow AH=\dfrac{SA.OA}{\sqrt{SA^2+OA^2}}=\dfrac{2a}{3}\)
và do đó phương trình đã cho tương đương với
Vậy đáp án là D.
Hàm số y 1 = sin π 2 − x có chu kì T 1 = 2 π − 1 = 2 π
Hàm số y 2 = cot x 3 có chu kì T 2 = π 1 3 = 3 π
Suy ra hàm số đã cho y = y 1 + y 2 có chu kì T = B C N N 2 , 3 π = 6 π .
Vậy đáp án là D.
Mỗi lần cắt một mảnh giấy thành 7 mảnh, tức là Mạnh tạo thêm 6 mảnh giấy. Do đó công thức tính số mảnh giấy theo n bước được thực hiện là Sn = 6n + 1. Ta chứng minh tính đúng đắn của công thức trên bằng phương pháp quy nạp theo n.
Bước cơ sở. Mạnh cắt mảnh giấy thành 7 mảnh, n =1, S(1) = 6.1+1 =7
Công thức đúng với n = 1
Bước quy nạp: giả sử sau k bước, Mạnh nhận được số mảnh giấy là S(k) = 6k + 1
Sang bước thứ k +1, Mạnh lấy một trong số những mảnh giấy nhận được trong k bước trước và cắt thành 7 mảnh. Tức là Mạnh đã lấy đi 1 trong S(k) mảnh và thay vào đó 7 mảnh được cắt ra. Vậy tổng số mảnh giấy ở bước k + 1 là: S(k =1) = S(k) -1 + 7= S(k) + 6 = 6k + 1 + 1 = 6(k+1) +1
Vậy công thức S(n) đúng với mọi n ∈N* . Theo công thức trên chỉ có phương án D thoả mãn vì 121 =6.20 + 1
Đáp án D
a) \(\dfrac{1}{\tan\alpha+1}+\dfrac{1}{\cot\alpha+1}\) \(=\dfrac{\tan\alpha+1+\cot\alpha+1}{\left(\tan\alpha+1\right)\left(\cot\alpha+1\right)}\) \(=\dfrac{\tan\alpha+\cot\alpha+2}{\tan\alpha\cot\alpha+\tan\alpha+\cot\alpha+1}\) \(=1\) (vì \(\tan\alpha\cot\alpha=1\))
b) \(\cos\left(\dfrac{\pi}{2}-\alpha\right)-\sin\left(\pi+\alpha\right)\) \(=\sin\left(\alpha\right)-\sin\left(\pi-\alpha\right)\) \(=0\) (do \(\sin\) của 2 cung bù nhau thì bằng nhau, \(\cos\) của 1 góc bằng \(\sin\) của góc phụ với nó).
c) \(\sin\left(\alpha-\dfrac{\pi}{2}\right)+\cos\left(-\alpha+6\pi\right)-\tan\left(\alpha+\pi\right)\cot\left(3\pi-\alpha\right)\)
\(=\cos\left(\pi-\alpha\right)+\cos\left(-\alpha\right)-\tan\alpha\cot\left(\pi-\alpha\right)\)
\(=\tan\alpha\cot\alpha\) \(=1\) (ở đây áp dụng tính chất của 2 cung hơn kém \(\pi\) nhiều lần)