K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

SUy ra 2 trường hợp  =>  từ 1 và 2 suy ra gì gì đó........

CHúc bạn hok tốt ;-;

31 tháng 10 2020

Áp dụng căn bậc hai,ta từ 1 có thể suy ra 2(2 ở đây là 2TH).Ví dụ:

\(1=\sqrt{1}=\hept{\begin{cases}-1\\1\end{cases}}\)

Còn nếu từ số một suy ra số 2 thì :

\(2-2+1\)

\(=2-\left(1+1\right)+\left(0,5+0,5\right)\)

\(=2-\left(1+\sqrt{1}\right)+\left(0,5+\sqrt{0,25}\right)\)

\(=2-\left(1+-1\right)+\left(0,5+-0,5\right)\)

\(=2-\left(1-1\right)+\left(0,5-0,5\right)\)

\(=2-0+0\)

\(=2\)

31 tháng 10 2020
https://scontent.fdad3-1.fna.fbcdn.net/v/t1.15752-9/123003016_851689625570003_1454037422538611142_n.png?_nc_cat=106&ccb=2&_nc_sid=ae9488&_nc_ohc=rJsrDeoCh0AAX90jt6i&_nc_ht=scontent.fdad3-1.fna&oh=a29b1a910354b1a229b1e921c07222d9&oe=5FC0F5FF
NM
15 tháng 10 2021

bạn nhầm xíu rồi nhé undefined

16 tháng 10 2021

thôi chết mình viết nhầm nhé  kết quả của nguyễn minh quang giống kết quả của mình 

3 tháng 7 2021

\(7:a,\sqrt{2-x}=3\)

\(\left|2-x\right|=3^2=9\)

\(\orbr{\begin{cases}2-x=9\\2-x=-9\end{cases}\orbr{\begin{cases}x=-7\left(KTM\right)\\x=11\left(TM\right)\end{cases}}}\)

\(b,\sqrt{4-4x+x^2}=3\)

\(\sqrt{\left(2-x\right)^2}=3\)

\(\left|2-x\right|=3\)

\(\orbr{\begin{cases}2-x=3\\2-x=-3\end{cases}\orbr{\begin{cases}x=-1\left(TM\right)\\x=5\left(TM\right)\end{cases}}}\)

\(c,\sqrt{4+x^2}+x=3\)

\(\sqrt{4+x^2}=3-x\)

\(4+x^2=\left(3-x\right)^2\)

\(4+x^2=9-6x+x^2\)

\(x=\frac{5}{6}\left(TM\right)\)

\(d,\frac{1}{2}\sqrt{16x-32}-2\sqrt{4x-8}+\sqrt{9x-18}=5\)

\(2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=5\)

\(\sqrt{x-2}\left(2-4+3\right)=5\)

\(\sqrt{x-2}=5\)

\(\left|x-2\right|=25\)

\(\orbr{\begin{cases}x-2=25\\x-2=-25\end{cases}\orbr{\begin{cases}x=27\left(TM\right)\\x=-23\left(KTM\right)\end{cases}}}\)

3 tháng 7 2021

thank

17 tháng 6 2021

Là thế lào

17 tháng 6 2021

Mọi người làm hết giúp mình với

26 tháng 6 2021

14, \(\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\)

\(=\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}\)

\(=\frac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)+\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(3\sqrt{x}+14\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}+14}{5\sqrt{x}-1}\)

27 tháng 6 2021

thank

3 tháng 12 2019

\(ĐKXĐ:x\ge2\)

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x^2+2x-3}+\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(+\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(TH1:\sqrt{x-2}-\sqrt{x+3}=0\Leftrightarrow\sqrt{x-2}=\sqrt{x+3}\)

\(\Leftrightarrow x-2=x+3\left(L\right)\)

\(TH2:\sqrt{x-1}-1=0\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)(t/m đk)

Vậy x = 2

3 tháng 12 2019

\(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)

\(\Leftrightarrow\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)

Dễ thấy \(VT>0\Rightarrow3x-5>0\Leftrightarrow x>\frac{5}{3}\)

\(pt\Leftrightarrow\left(\sqrt{x^2+5}-3\right)-\left(\sqrt{x^2+12}-4\right)+3x-6=0\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+5}+3}-\frac{x^2-4}{\sqrt{x^2+12}+4}+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+5}+3}-\frac{x+2}{\sqrt{x^2+12}+4}+3\right)=0\)

Ta có: \(\frac{x+2}{\sqrt{x^2+5}+3}-\frac{x+2}{\sqrt{x^2+12}+4}\)\(=\left(x+2\right)\left(\frac{1}{\sqrt{x^2+5}+3}-\frac{1}{\sqrt{x^2+12}+4}\right)\)

\(=\left(x+2\right).\frac{\sqrt{x^2+12}-\sqrt{x^2+5}+1}{\left(\sqrt{x^2+5}+3\right)\left(\sqrt{x^2+12}+4\right)}>0\forall x>\frac{5}{3}\)

\(\Rightarrow x-2=0\Leftrightarrow x=2\)

Vậy x = 2

2 tháng 1 2019
Gì vậy ko hiểu
2 tháng 1 2019

? ko hiểu