Giải phương trình với nghiệm nguyên dương:
2^x+57=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử x,y là nghiệm nguyên dương của pt \(x^2-x-6=y^2\)
\(x^2-x-6=y^2\)
\(\Leftrightarrow x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=y^2\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-y^2=\frac{25}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}-y\right)\left(x-\frac{1}{2}+y\right)=\frac{25}{4}\)
\(\Leftrightarrow\left(2x-1-2y\right)\left(2x-1+2y\right)=25\)
Đến đây dẽ rồi chị làm nốt nhé
Khó quá..............................................................................
Với \(x=0\Rightarrow y=\ne2\)
Với \(x>1\Rightarrow\)VT lẻ \(\Rightarrow y=2x+1\)
\(2^x+2=\left(2x+1\right)^2-1=4x\left(x+1\right)\)
\(\Leftrightarrow2^{x-1}+1=2x\left(x+1\right)\)
do \(x>1\Rightarrow2^{x-1}\)chẵn \(\Rightarrow\)VT lẻ , mà VP chẵn
\(\Rightarrow\)P/t vô nghiệm
Vậy p/t có nghiệm là \(\hept{\begin{cases}x=0\\y=\ne2\end{cases}}\)