K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 giờ trước (10:40)

Bài 1:

A = \(\frac{x+4}{x-7}\) (7 ≠ \(x\) ∈ Z)

A ∈ Z ⇔ (\(x+4\)) ⋮ (\(x\) - 7)

[(\(x-7\)) + 11] ⋮ (\(x\) - 7)

11 ⋮ (\(x\) - 7)

(\(x-7\)) ∈ Ư(11) = {-11; - 1; 1 ; 11}

Lập bảng ta có:


\(x\)-7

-11

-1

1

11

\(x\)

-4

6

8

18

\(x\) ∈ Z

tm

tm

tm

tm


Theo bảng trên ta có: \(x\in\) {-4; 6; 8; 18}

Vậy \(x\) ∈ {-4; 6; 8; 18}




9 giờ trước (10:49)

Bài 2:

B = \(\frac{2x+3}{2x-1}\) (\(x\) ∈ Z; B ∈ Z)

B ∈ Z ⇔ (2\(x+3\)) ⋮ (2\(x\) - 1)

[(2\(x-1\)) + 4] ⋮ (2\(x\) - 1)

4 ⋮ (2\(x-1\))

(2\(x-1\)) ∈ Ư(4) = {-4; - 2; -1; 1; 2; 4}

Lập bảng ta có:

2\(x\)-1

-4

-2

-1

1

2

4

\(x\)

-3/2

-1/2

0

1

3/2

5/2

\(x\in\) Z

ktm

ktm

tm

tm

ktm

ktm

Theo bảng trên ta có:

\(x\) ∈ {0; 1}

Vậy \(x\) ∈ {0; 1}


24 tháng 6 2021

a) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}=1+\dfrac{4}{\sqrt{x}-2}\)

Để A nguyên thì 4 ⋮ √x - 2

\(\Rightarrow\sqrt{x}-2\inƯ\left(4\right)\)

\(\Rightarrow\sqrt{x}-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0;6;-2\right\}\)

Mà x \(\sqrt{x}\ge0\)

=> x thuộc {9; 1; 16; 0; 36}

b) 

24 tháng 6 2021

cj hiểu sai ý của đề rùi

19 tháng 5 2021

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

19 tháng 5 2021

Mình làm sai câu a...

Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên

Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)

Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Đề bài bạn viết hơi khó hiểu, nhưng có thể tạm giải như sau:

Lời giải:
$A=\frac{4x^2}{x+1}=\frac{4(x^2-1)+4}{x+1}=\frac{4(x-1)(x+1)+4}{x+1}$

$=4(x-1)+\frac{4}{x+1}$

Với $x$ nguyên thì:

$A\in\mathbb{Z}\Leftrightarrow 4(x-1)+\frac{4}{x+1}\in\mathbb{Z}$

$\Leftrightarrow \frac{4}{x+1}\in\mathbb{Z}$

$\Leftrightarrow x+1$ là ước của $4$

$\Rightarrow x+1\in\left\{\pm 1;\pm 2;\pm 4\right\}$

$\Rightarrow x\in\left\{-2; 0; -3; 1; 3; -5\right\}$

14 tháng 9 2021

thanks bạn nha

 

17 tháng 12 2016

Ta có 3x^2-x+1=3x^2+2x-3x-2+3=(3x-2)(x-1)+3

D có giá trị nguyên\(\) khi 3\(⋮\)(3x+2)\(\Leftrightarrow\)3x+2 là ước của 3\(\Leftrightarrow\)3x+2\(\in\){-3;-1;1;3} suy ra x\(\in\){-5/3;-1;-1/3;1/3}mà x nguyên nên ta tìm được x=-1

17 tháng 12 2016

Căm ơn bạn !

21 tháng 12 2021

a) ĐK:\(\begin{cases} x + 2≠0\\ x - 2≠0 \end{cases}\)\(\begin{cases} x ≠ -2\\ x≠ 2 \end{cases}\)

Vậy biểu thức P xác định khi x≠ -2 và x≠ 2

b) P= \(\dfrac{3}{x+2}\)-\(\dfrac{2}{2-x}\)-\(\dfrac{8}{x^2-4}\)

P=\(\dfrac{3}{x+2}\)+\(\dfrac{2}{x-2}\)-\(\dfrac{8}{(x-2)(x+2)}\)

P= \(\dfrac{3(x-2)}{(x-2)(x+2)}\)+\(\dfrac{2(x+2)}{(x-2)(x+2)}\)-\(\dfrac{8}{(x-2)(x+2)}\)

P= \(​​​​\dfrac{3x-6+2x+4-8}{(x-2)(x+2)}\)

P=\(\dfrac{5x-10}{(x-2)(x+2)}\)

P=\(\dfrac{5(x-2)}{(x-2)(x+2)}\)

P=\(\dfrac{5}{x+2}\)

Vậy P=\(\dfrac{5}{x+2}\)

21 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

18 tháng 4 2017

\(\frac{4x+7}{x+2}=\frac{4x+8}{x+2}-\frac{1}{x+2}=4-\frac{1}{x+2}\)

Biểu thức đạt giá trị nguyên khi \(\frac{1}{x+2}\) nguyên <=> 1 chia hết cho x+2

<=>\(x+2\inƯ\left(1\right)\)={-1;1} <=> x\(\in\){-3;-1}

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

10 tháng 1 2018

mk cần gấp lắm các bạn ạk

10 tháng 1 2018

BÀI 1:

a)  \(ĐKXĐ:\)          \(x-3\)\(\ne\)\(0\)

                          \(\Leftrightarrow\)\(x\)\(\ne\)\(3\)

b)   \(A=\frac{x^3-3x^2+4x-1}{x-3}\)

\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)

\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)

\(=x^2+4+\frac{11}{x-3}\)

Để  \(A\)có giá trị nguyên thì  \(\frac{11}{x-3}\)có giá trị nguyên

hay  \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng sau

\(x-3\)    \(-11\)         \(-1\)             \(1\)           \(11\)

\(x\)             \(-8\)               \(2\)              \(4\)           \(14\)

Vậy....

5 tháng 3 2023

để `2/(x-1)` nhận giá trị nguyên thì

\(2⋮x-1\)

x-1 thuộc ước của 2

ta có bảng sau

x-12-21-1
x3-120

 

vậy \(x\in\left\{3;-1;2;0\right\}\)