H=(1-1/2)*(1-1/3)*(1-1/4)*.......*(1-1/200)
giúp mình với @Kẻ Mạo Danh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) mk chỉnh đề
\(A=\left(1+\frac{1}{2005}\right)\left(1+\frac{1}{2006}\right)\left(1+\frac{1}{2019}\right)\)
\(=\frac{2006}{2005}.\frac{2007}{2006}.....\frac{2020}{2019}\)
\(=\frac{2020}{2005}\)
\(=\frac{404}{401}\)
\(B=\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+....+\frac{3}{1+2+3+...+100}\)
\(=3+3\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)
\(=3+3.\left(\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+....+\frac{1}{\frac{100.101}{2}}\right)\)
\(=3+3.\left(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{100.101}\right)\)
\(=3+6\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=3+6\left(\frac{1}{2}-\frac{1}{101}\right)=3+6.\frac{99}{202}\)
\(=3+2\frac{95}{101}=5\frac{95}{101}\)
\(\)
Ta có:
\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{200}{201}\times x=\frac{1}{402}\)
\(\Rightarrow\frac{1}{201}\times x=\frac{1}{402}\Rightarrow x=\frac{1}{402}:\frac{1}{201}=\frac{1}{2}\)
Vậy x = 1/2.
k vs kb cho tớ nha!
1/2 . 2/3 . 3/4 .... . 200/201 . x = 1/402
\(\frac{1.2.3...200}{2.3.4...201}\). x = 1/402
1/201 . x = 1/402
x = 1/402 : 1/201
x = 1/2
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};....;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{1}{2}\)
Vậy \(C=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Ta đã biết \(\dfrac{1}{a\cdot a}< \dfrac{1}{\left(a+1\right)\left(a-1\right)}\) ( a ϵ Z )
⇒ \(Q=\dfrac{1}{2\cdot2}+\dfrac{1}{3\cdot3}+\dfrac{1}{4\cdot4}+...+\dfrac{1}{200\cdot200}\) < \(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{199\cdot201}\)
Ta có \(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{199\cdot201}\)
= \(\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{199\cdot201}\right)\)
= \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{201}\right)\)
= \(\dfrac{1}{2}\left(1-\dfrac{1}{201}\right)=\dfrac{1}{2}\cdot\dfrac{200}{201}=\dfrac{100}{201}< \dfrac{100}{200}=\dfrac{1}{2}< \dfrac{3}{4}\)
Vậy Q < \(\dfrac{3}{4}\)
\(C=2+4+6+8+...+50\)
Số các số hạng của \(C\) là:
\(\left(50-2\right):2+1=25\left(số\right)\)
Tổng \(C\) bằng:
\(\left(50+2\right)\cdot25:2=650\)
\(---\)
\(D=1+2+3+4+...+200\)
Số các số hạng của \(D\) là:
\(\left(200-1\right):1+1=200\left(số\right)\)
Tổng \(D\) bằng:
\(\left(200+1\right)\cdot200:2=20100\)
\(---\)
\(E=1+4+7+10+...+100\)
Số các số hạng của \(E\) là:
\(\left(100-1\right):3+1=34\left(số\right)\)
Tổng \(E\) bằng:
\(\left(100+1\right)\cdot34:2=1717\)
\(Toru\)
Khoảng cách giữa 2 số hạng liên tiếp ở tổng A là: 2
Số số hạng của tổng C là:
(50 - 2) : 2 + 1 = 25 (số hạng)
Tổng C có giá trị là:
(2 + 50) x 25 : 2 = 650
-----------------------------------------
Số số hạng của tổng D là: 200
Tổng D có giá trị là:
(1 + 200) x 200 : 2 = 20100
----------------------------------------
Khoảng cách giữa 2 số hạng liên tiếp của tổng E là: 3
Số số hạng của tổng E là:
(100 - 1) : 3 + 1 = 34 (số hạng)
Tổng E có giá trị là:
(1 + 100) x 34 : 2 = 1717
Đáp số: C = 650
D = 20100
E = 1717
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+....+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}\)
\(=\frac{\frac{201.202}{2}-1}{2}=10150\)
\(\left(1-\frac12\right)\left(1-\frac13\right)\left(1-\frac14\right)\ldots\left(1-\frac{1}{200}\right)\)
\(=\frac12\cdot\frac23\cdot\frac34\cdot\ldots\cdot\frac{199}{200}\)
\(=\frac{1\cdot2\cdot3\cdot4\cdot\ldots\cdot199}{2\cdot3\cdot4\cdot5\cdot\ldots\cdot200}\)
\(=\frac{1}{200}\)
Đây là câu hỏi không khó và có rất nhiều thành viên khác có thể giải được. Nên bạn đừng quá kì vọng vào một người nào đó nha!
Chúc bạn học tốt!