K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
26 tháng 6

\(\left(1-\frac12\right)\left(1-\frac13\right)\left(1-\frac14\right)\ldots\left(1-\frac{1}{200}\right)\)

\(=\frac12\cdot\frac23\cdot\frac34\cdot\ldots\cdot\frac{199}{200}\)

\(=\frac{1\cdot2\cdot3\cdot4\cdot\ldots\cdot199}{2\cdot3\cdot4\cdot5\cdot\ldots\cdot200}\)

\(=\frac{1}{200}\)

26 tháng 6

Đây là câu hỏi không khó và có rất nhiều thành viên khác có thể giải được. Nên bạn đừng quá kì vọng vào một người nào đó nha!

Chúc bạn học tốt!

17 tháng 8 2018

a)  mk chỉnh đề

\(A=\left(1+\frac{1}{2005}\right)\left(1+\frac{1}{2006}\right)\left(1+\frac{1}{2019}\right)\)

\(=\frac{2006}{2005}.\frac{2007}{2006}.....\frac{2020}{2019}\)

\(=\frac{2020}{2005}\)

\(=\frac{404}{401}\)

17 tháng 8 2018

\(B=\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+....+\frac{3}{1+2+3+...+100}\)

\(=3+3\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)

\(=3+3.\left(\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+....+\frac{1}{\frac{100.101}{2}}\right)\)

\(=3+3.\left(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{100.101}\right)\)

\(=3+6\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=3+6\left(\frac{1}{2}-\frac{1}{101}\right)=3+6.\frac{99}{202}\)

\(=3+2\frac{95}{101}=5\frac{95}{101}\)

\(\)

11 tháng 6 2018

Ta có:

\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{200}{201}\times x=\frac{1}{402}\)

\(\Rightarrow\frac{1}{201}\times x=\frac{1}{402}\Rightarrow x=\frac{1}{402}:\frac{1}{201}=\frac{1}{2}\)

Vậy x = 1/2.

k vs kb cho tớ nha!

11 tháng 6 2018

1/2 . 2/3 . 3/4 .... . 200/201 . x = 1/402

\(\frac{1.2.3...200}{2.3.4...201}\). x = 1/402

1/201 . x = 1/402

x = 1/402 : 1/201

x = 1/2

12 tháng 8 2016

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};....;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{1}{2}\)

Vậy \(C=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}\)

12 tháng 8 2016

Ko hỉu

11 tháng 3 2023

Ta đã biết \(\dfrac{1}{a\cdot a}< \dfrac{1}{\left(a+1\right)\left(a-1\right)}\) ( a ϵ Z )

⇒ \(Q=\dfrac{1}{2\cdot2}+\dfrac{1}{3\cdot3}+\dfrac{1}{4\cdot4}+...+\dfrac{1}{200\cdot200}\) < \(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{199\cdot201}\) 

Ta có \(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{199\cdot201}\) 

\(\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{199\cdot201}\right)\)

\(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{201}\right)\)

\(\dfrac{1}{2}\left(1-\dfrac{1}{201}\right)=\dfrac{1}{2}\cdot\dfrac{200}{201}=\dfrac{100}{201}< \dfrac{100}{200}=\dfrac{1}{2}< \dfrac{3}{4}\)

Vậy Q < \(\dfrac{3}{4}\)

12 tháng 10 2023

\(C=2+4+6+8+...+50\)

Số các số hạng của \(C\) là:

\(\left(50-2\right):2+1=25\left(số\right)\)

Tổng \(C\) bằng:

\(\left(50+2\right)\cdot25:2=650\)

\(---\)

\(D=1+2+3+4+...+200\)

Số các số hạng của \(D\) là:

\(\left(200-1\right):1+1=200\left(số\right)\)

Tổng \(D\) bằng:

\(\left(200+1\right)\cdot200:2=20100\)

\(---\)

\(E=1+4+7+10+...+100\)

Số các số hạng của \(E\) là:

\(\left(100-1\right):3+1=34\left(số\right)\)

Tổng \(E\) bằng:

\(\left(100+1\right)\cdot34:2=1717\)

\(Toru\)

12 tháng 10 2023

Khoảng cách giữa 2 số hạng liên tiếp ở tổng A là: 2

Số số hạng của tổng C là:

(50 - 2) : 2 + 1 = 25 (số hạng)

Tổng C có giá trị là:

(2 + 50) x 25 : 2 = 650

-----------------------------------------

Số số hạng của tổng D là: 200

Tổng D có giá trị là:

(1 + 200) x 200 : 2 = 20100

----------------------------------------

Khoảng cách giữa 2 số hạng liên tiếp của tổng E là: 3

Số số hạng của tổng E là:

(100  - 1) : 3 + 1 = 34 (số hạng)

Tổng E có giá trị là:

(1 + 100) x 34 : 2 = 1717

Đáp số: C = 650

              D = 20100

              E = 1717

8 tháng 8 2017

tao gia mao

8 tháng 8 2017

bn phải đưa ra dấu vết hay j đó thì mới tìm đc chứ

19 tháng 3 2017

\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+....+200\right)\)

\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)

\(=\frac{2+3+4+...+201}{2}\)

\(=\frac{\frac{201.202}{2}-1}{2}=10150\)

26 tháng 4 2020

Em chào chị Như ạ em tên là Nam Anh

14 tháng 2 2016

j mà  nhìu zu zậy làm bao giờ mới xong

14 tháng 2 2016

Ủng hộ mk đi các bạn