chứng minh A=1^2+2^2+...+n^2 chia hết cho B=1+2+3+..+n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15

a) Ta có: ( n + 3 ) 2 - ( n - 1 ) 2 = 8(n +1) chia hết cho 8.
b) Ta có: ( n + 6 ) 2 - ( n - 6 ) 2 = 24n chia hết cho 24.

BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Đề sai rồi bạn
Với n = 1 thì A = 1\(^2\) = 1; B = 1; A ⋮ B
Với n = 2 thì A = 1\(^2\) + 2\(^2\) = 5; B = 1 + 2 = 3
A không chia hết cho b; Vậy A ⋮ B với mọi n là không thể.