K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5

Ta cần tìm số tự nhiên n sao cho:

S = 1! + 2! + 3! + ... + n!số chính phương (tức là bình phương của một số tự nhiên).

Thử các giá trị nhỏ của n:

  • n = 1: S = 1! = 1 → ✅ là số chính phương (1²)
  • n = 2: S = 1! + 2! = 1 + 2 = 3 → ❌ không phải
  • n = 3: S = 1 + 2 + 6 = 9 → ✅ là số chính phương (3²)
  • n = 4: S = 1 + 2 + 6 + 24 = 33 → ❌
  • n = 5: S = 33 + 120 = 153 → ❌
  • n = 6: S = 153 + 720 = 873 → ❌
  • n = 7: S = 873 + 5040 = 5913 → ❌

✅ Kết luận:

Chỉ có n = 1n = 3 thì S là số chính phương.

Đáp án: n = 1 hoặc n = 3.

25 tháng 5

Olm chào em, Đây là toán nâng cao chuyên đề số chính phương, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

Giải:

S = 1! + 2! + 3! + ... + n!

Nếu n = 1 thì S = 1! = 1 = 1\(^2\)(nhận)

Nếu n = 2 thì S = 1! + 2! = 1+1.2= 3 (loại)

Nếu n = 3 thì

S = 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3\(^2\)(nhận)

Nếu n = 4 thì:

S = 1! + 2! + 3! + 4!

S = 1+1.2+1.2.3+1.2.3.4

S = 1 + 2 + 6+ 24

S = 3 + 6 + 24

S = 9 + 24

S = 33 loại vì không phải là số chính phương.

Nếu n ≥ 5 ta có:

S = (1! + 2! + 3! + 4!) + 5! +...+ n!

S =33 + 1.2.3.4.5 +...+1.2.3.4.5...n

S = 3+5.6 +1.2.3.4.5 + ..+ 1.2.3.4.5...n

S chia 5 dư 3 mà số chính phương chia 5 chỉ có thể dư 0; 1 hoặc 4

Vậy n ≥ 5 thì S không phải là số chính phương với mọi n ≥ 5

Kết luận n ∈ {1; 3}

6 tháng 12 2019

với n = 1 thì n! = 1 = 12 là số chính phương

với n = 2 thì 1!+2! = 3 không là số chính phương

với n = 3 thì 1!+2!+3! = 1+1.2+1.2.3=9 là số chính phương

với n \(\ge\)4 ta có 1! + 2! + 3! + 4! = 1 + 1.2 + 1.2.3 + 1.2.3.4 = 33 còn 5! ; 6! ; ... ; n!  đều có tận cùng là 0 do đó 1! + 2! + 3! + .... + n! có tận cùng là 3 nên nó k phải số chính phương

vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1 ; n = 3

9 tháng 7 2020

với n 1 thì n! = 1 =​​​ 1\(^2\)là số chính phương

với n = 2 thì 1! + 2!  = 3 không là số chính phương

với n = 3 thì 1! +2! +3! = 1+1.2 +1.2.3 =9 là số chính phương

với n \(>\)4 ta có 1! +2! +3! +4! = 1 +1.2 + 1.2.3 +1.2.3.4 = 33 còn 5! ; 6!; ....; n! đều có tận cùng là 0 do đó 1! +2! +3!+ .... +

n! có tận cùng là 3 nên nó không phải số chính phương

vậy có 2 số tự nhiên n thỏa mãn đề bài là n =1 ; n=3

DD
15 tháng 1 2021

Với \(n\ge5\)

\(1!+2!+3!+4!+5!+...+n!\equiv\left(1!+2!+3!+4!\right)\left(mod10\right)\equiv3\left(mod10\right)\)

Vì \(k!=1.2.3.....k=\left(2.5\right).1.3.4.6.....k\)(Với \(k\ge5\))

mà số chính phương không thể có tận cùng là \(3\)nên loại. 

Tính trực tiếp với các trường hợp \(n=1,2,3,4\)ta được \(n=1\)và \(n=3\)thỏa mãn. 

 Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

11 tháng 4 2016

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

23 tháng 4 2016

Gọi A(n) = 1 + 2

Với n = 1 => A1 = 1 = 1 =  là một số chính phương

                =>n = 1 (TM)

Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương

              =>n = 2 (KTM)

Với n = 3 => A3 =  =1 + 2 + 6 = 9 =  là một số chính phương

            =>n = 3 (TM)

Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương

Với n

Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5

Nên n có chữ số tận cùng là 3

Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9

=>n = 5(KTM)

Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương

23 tháng 4 2016

Gọi A(n) = 1 + 2

Với n = 1 => A1 = 1 = 1 =  là một số chính phương

                =>n = 1 (TM)

Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương

              =>n = 2 (KTM)

Với n = 3 => A3 =  =1 + 2 + 6 = 9 =  là một số chính phương

            =>n = 3 (TM)

Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương

Với n

Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5

Nên n có chữ số tận cùng là 3

Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9

=>n = 5(KTM)

Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương

26 tháng 6 2016

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

26 tháng 6 2016

+)  Với n = 1 thì 1! = 1 = 1² là số chính phương . 
+)  Với n = 2 thì 1! + 2! = 3 không là số chính phương 
+)  Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
+)  Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3

6 tháng 2 2016

A)(0;0)(1;1)

B)Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

6 tháng 2 2016

a)xy=x+y

=>xy-x-y=0

=>x(y-1)-(y-1)-1=0

=>x(y-1)-(y-1)=1

=>(y-1)(x-1)=1

=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0

b)Câu này khó quá nhưng ủng hộ nha

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP