Cho tứ giác lồi ABCD. M và K lần lượt là trung điểm của các cạnh BC và AD. AM cắt BK tại H, DM cắt CK tại L. Chứng minh rằng diện tích tứ giác HKLM bằng tổng diện tích của hai tam giác ABH và CDL.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan
**(a) Bài 1. Cho hình bình hành \(A B C D\) có diện tích \(100 \&\text{nbsp}; \text{cm}^{2} .\) Gọi \(M , N , P , Q\) lần lượt là trung điểm các cạnh \(A B , \textrm{ } B C , \textrm{ } C D , \textrm{ } D A .\)
Tính diện tích tứ giác \(E F G H .\)**
Giải (phương pháp qua tọa độ)
Tìm giao \(E = A N \cap D M\).
\(\left{\right. t \textrm{ } b = s \textrm{ } \frac{b}{2} , \\ t \textrm{ } \frac{d}{2} = d - s \textrm{ } d .\)
Từ \(t \textrm{ } b = \frac{b}{2} \textrm{ } s \Rightarrow t = \frac{s}{2} .\) Thay vào \(t \textrm{ } \frac{d}{2} = d \left(\right. 1 - s \left.\right)\):
\(\frac{s}{2} \cdot \frac{d}{2} = d - d \textrm{ } s \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{s \textrm{ } d}{4} = d \left(\right. 1 - s \left.\right) \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{s}{4} = 1 - s \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } s + \frac{s}{4} = 1 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{5 s}{4} = 1 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } s = \frac{4}{5} , t = \frac{s}{2} = \frac{2}{5} .\)
Vậy \(E\) có
\(E = \left(\right. t \textrm{ } b , \textrm{ }\textrm{ } t \textrm{ } \frac{d}{2} \left.\right) = \left(\right. \frac{2 b}{5} , \textrm{ }\textrm{ } \frac{2 d}{10} \left.\right) = \left(\right. \frac{2 b}{5} , \textrm{ } \frac{d}{5} \left.\right) .\)
Giải hệ:
\(b - \frac{b}{2} u = s \textrm{ } \frac{b}{2} , u \textrm{ } d = d - s \textrm{ } d .\)
Từ \(u \textrm{ } d = d \left(\right. 1 - s \left.\right) \Rightarrow u = 1 - s .\) Thay vào \(b - \frac{b}{2} \left(\right. 1 - s \left.\right) = \frac{b}{2} s\).
\(b - \frac{b}{2} + \frac{b}{2} s = \frac{b}{2} s \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } b - \frac{b}{2} = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{b}{2} = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } (\text{m} \hat{\text{a}} \text{u}\&\text{nbsp};\text{thu} \overset{\sim}{\hat{\text{a}}} \text{n}!)\)
Nhầm suy diễn; phải đặt phương trình chính xác:
\(x : \textrm{ }\textrm{ } b - \frac{b}{2} u = \frac{b}{2} s \Longrightarrow b - \frac{b}{2} u - \frac{b}{2} s = 0 \Longrightarrow 1 - \frac{u}{2} - \frac{s}{2} = 0 \Longrightarrow u + s = 2.\)
Mà \(u = 1 - s\) thì
\(\left(\right. 1 - s \left.\right) + s = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 1 = 2 \textrm{ }\textrm{ } (\text{m} \hat{\text{a}} \text{u}\&\text{nbsp};\text{thu} \overset{\sim}{\hat{\text{a}}} \text{n}).\)
Xác định nhầm điểm giao: Thực tế, \(B P\) không cắt \(D M\) bên trong hình; ta cần tứ giác \(E F G H\) nên:
Thay vào, trong đề: “\(A N\) giao \(D M\) tại \(E\), \(B P\) giao \(A N\) tại \(D\), \(C Q\) giao \(B P , D M\) tại \(G , H\).”
Rốt cuộc, cách dễ nhất là dùng tính chất: Khi nối các trung điểm (hình tứ giác giữa 4 điểm M,N,P,Q), sẽ chia hình bình hành thành 4 hình thoi (mỗi cái diện tích bằng \(\frac{1}{4}\) diện tích hình bình hành gốc). Tứ giác \(E F G H\) nằm chính giữa, bằng \(\frac{1}{5}\) – cách “truyền thống” ở dạng bài điền tọa độ hơi lắt léo.
Giải:
(b) Bài 2. Cho tứ giác lồi \(A B C D .\) \(M\) và \(K\) lần lượt là trung điểm \(B C\) và \(A D .\) \(A M\) cắt \(B K\) tại \(H .\) \(D M\)
Đúng(0)