Tìm x, biết
1) x-1/x + 1/x+1 = 2x-1/x^2+x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x<>0; x<>1
\(P=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |2x+1|=3
=>x=1(loại); x=-2(nhận)
Khi x=-2 thì P=4/-3=-4/3
c: P=-1/2
=>x^2/x-1=-1/2
=>2x^2=-x+1
=>2x^2+x-1=0
=>2x^2+2x-x-1=0
=>(x+1)(2x-1)=0
=>x=1/2; x=-1
1, \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[x+2-\left(x-1\right)\right]=0\)
\(\Leftrightarrow3\left(x-1\right)=0\Leftrightarrow x=1\)
2, \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x-2-3\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\Leftrightarrow x=-\dfrac{5}{2};x=2\)
3, \(\left(5-2x\right)\left(2x+7\right)=4x^2-25=\left(2x-5\right)\left(2x+5\right)\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+2x+5\right)=0\Leftrightarrow\left(4x+12\right)\left(5-2x\right)=0\Leftrightarrow x=-3;x=\dfrac{5}{2}\)
1) Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2-x+1\right)=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
2) Ta có: \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-3x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-5}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow x^3-8-x\left(x^2-9\right)=1\\ \Leftrightarrow x^3-8-x^3+9x=1\\ \Leftrightarrow9x=9\Leftrightarrow x=1\\ b,\Leftrightarrow8x^3+12x^2+6x+1-8x^3 +12x^2-6x+1-24x^2+24x-1=0\Leftrightarrow1=0\Leftrightarrow x\in\varnothing\)
a) \(\Leftrightarrow x^3-8-x^3+9x=1\)
\(\Leftrightarrow9x=9\Leftrightarrow x=1\)
b) \(\Leftrightarrow8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2+24x-6=5\)
\(\Leftrightarrow24x=9\Leftrightarrow x=\dfrac{3}{8}\)
Đặt x2 + 3x + 3 = a ; x2 - x - 1 = b ; -2x2 - 2x - 1 = c ; -1 = d
Ta nhận thấy a3 + b3 + c3 + d3 = 0 (1)
và a + b + c + d = 0
Khi đó ta có (1) <=> (a + b)3 + (c + d)3 - 3ab(a + b) - 3cd(c + d) = 0
<=> ab(a + b) + cd(c + d) = 0
<=> (a + b)(ab - cd) = 0
<=> \(\left[{}\begin{matrix}a=-b\\ab=cd\end{matrix}\right.\)
Với a = -b ta được x2 + 3x + 3 = -x2 + x + 1
<=> x2 + x + 1 = 0
<=> \(\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\)
=> Phương trình vô nghiệm
Với ab = cd
\(\Leftrightarrow\left(x^2+3x+3\right).\left(x^2-x-1\right)=2x^2+2x+1\)
\(\Leftrightarrow\) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow\left(x^4+2x^3+x^2\right)-\left(4x^2+8x+4\right)=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-\left(2x+2\right)^2=0\)
\(\Leftrightarrow\left(x^2+3x+2\right).\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2.\left(x-2\right).\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
A=(x−11−1−x3x⋅x+1x2+x+1):x2+2x+12x+1
\(= \left(\right. \frac{1}{x - 1} + \frac{x}{\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)} \cdot \frac{x^{2} + x + 1}{x + 1} \left.\right) \cdot \frac{\left(\left(\right. x + 1 \left.\right)\right)^{2}}{2 x + 1}\)
\(= \left(\right. \frac{1}{x - 1} + \frac{x}{\left(\right. x - 1 \left.\right) \left(\right. x + 1 \left.\right)} \left.\right) \cdot \frac{\left(\left(\right. x + 1 \left.\right)\right)^{2}}{2 x + 1}\)
\(= \left(\right. \frac{x + 1 + x}{\left(\right. x - 1 \left.\right) \left(\right. x + 1 \left.\right)} \left.\right) \cdot \frac{\left(\left(\right. x + 1 \left.\right)\right)^{2}}{2 x + 1}\)
\(= \frac{2 x + 1}{\left(\right. x - 1 \left.\right) \left(\right. x + 1 \left.\right)} \cdot \frac{\left(\left(\right. x + 1 \left.\right)\right)^{2}}{2 x + 1}\)
\(= \frac{x + 1}{x - 1}\)
Vậy : \(A = \frac{x + 1}{x - 1} , \left(\right. x \neq \pm 1 , - \frac{1}{2} \left.\right)\)