Cho hình bình hành ABCD (AB>BC)
Tia phân giác của B cắt CD tại N
a)CM DM//BN
b) DMBN là hình j
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình nhá!!!!
a) ABCD là hình bình hành=>góc ADC=góc ABC => góc MBN=góc MDN
Mà: góc MBN= góc BNC( so le trong) => góc BNC=góc MDN => DM//BN
b) Từ phần a ta có:
Xét DMNB có DM//BN
BM//DN (do AB//CD)
=> DMNB là hbh
c) Ta có:
góc AMD= góc MDC(so le trong) => góc ADM= góc AMD=> Tam giác AMD cân tại A
Mà: AH là đường phân giác=> AH là đường cao<=> AH vuông góc với DM (1)
=>AG vuông góc với BN ( do DM//BN) (2)
Tương tự, ta cũng chứng minh được tam giác BNC cân tại C
Mà: CF là đường PG=> CF vuông góc với BN (3)
Từ (1); (2); (3) => HEFG là hcn do có 3 góc vuông

a: Xét ΔADM và ΔCBN có
\(\widehat{ADM}=\widehat{CBN}\)
AD=CB
\(\widehat{A}=\widehat{C}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN

a: Xét ΔADM và ΔCBN có
\(\widehat{ADM}=\widehat{CBN}\)
AD=CB
\(\widehat{A}=\widehat{C}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN

a: Xét ΔADN và ΔCBM có
góc A=góc C
AD=CB
góc ADN=góc CBM
=>ΔADN=ΔCBM
b: ΔADN=ΔCBM
=>AN=CM
AN+NB=AB
CM+MD=CD
mà AN=CM và AB=CD
nên NB=MD
mà NB//MD
nên NBMD là hình bình hành
c: Xét tứ giác AMCN có
AN//CM
AN=CM
=>AMCN là hình bình hành

bn tự kẻ hình nha!
a) ta có: AB = DC ( ACBD là hình bình hành)
----> BM = CN ( = 1/2. AB = 1/2 . DC)
mà BM // CN
-----> BMNC là h.b.h
b) xét tam giác AMD và tam giác CNB
có: AM = CN ( = 1/2.AB = 1/2.CD)
AD = BC (gt)
^DAM = ^NCB (gt)
-----> tg AMD = tg CNB (c-g-c)
-----> DM = NB ( 2 cạnh t/ ư)
c) AN cắt DM tại I, MC cắt BN tại K. chứng minh : AC,BD,MN,IK
bài làm
Gọi AC cắt DB tại E
ta có: tg AMD = tg CNB (cmt)
-----> ^AMD = ^CNB
mà ^AMD = ^MDN ( AB//DC)
-----> ^CNB = ^MDN
mà ^CNB, ^MDN nằm ở vị trí đồng vị
-----> DM// BN
và DM = BN (pb)
-----> DMBN là h.b.h
-------> BD cắt MN tại E ( do 2 đường chéo của h.b.h cắt nhau tại trung điểm của mỗi đường)
tương tự bn cx chứng minh: MINK là h.b.h ( MI = NK = 1/2.DM = 1/2.BN)
-----> MN cắt IK tại E
------------> AC,BD, MN,IK đồng quy tại E

a: Ta có: \(\hat{DAM}=\hat{BAM}=\frac12\cdot\hat{DAB}\) (AM là phân giác của góc DAB)
\(\hat{BCN}=\hat{DCN}=\frac12\cdot\hat{BCD}\) (CN là phân giác của góc BCD)
mà \(\hat{DAB}=\hat{DCB}\) (ABCD là hình bình hành)
nên \(\hat{DAM}=\hat{BAM}=\hat{BCN}=\hat{DCN}\)
Xét ΔMDA và ΔNBC có
\(\hat{MDA}=\hat{NBC}\)
DA=BC
\(\hat{MAD}=\hat{NCB}\)
Do đó: ΔMDA=ΔNBC
=>MA=NC và DM=BN
Ta có: DM+MC=DC
BN+NA=BA
mà DM=BN và DC=BA
nên MC=NA
Xét tứ giác ANCM có
AN//CM
AN=CM
Do đó: ANCM là hình bình hành
=>AM//CN
b: Ta có: \(\hat{DAM}=\hat{BAM}\) (AM là phân giác của góc BAD)
\(\hat{BAM}=\hat{AMD}\) (hai góc so le trong, AB//CD)
Do đó: \(\hat{DAM}=\hat{DMA}\)
=>ΔDAM cân tại D
Ta có: \(\hat{BNC}=\hat{NCD}\) (hai góc so le trong, BA//CD)
\(\hat{BCN}=\hat{NCD}\) (CN là phân giác của góc CBD)
Do đó: \(\hat{BNC}=\hat{BCN}\)
=>ΔBNC cân tại B
ΔDAM cân tại D
mà DE là đường phân giác
nên E là trung điểm của AM
ΔBNC cân tại B
mà BF là đường phân giác
nên F là trung điểm của NC
Xét hình thang ANCM có
E,F lần lượt là trung điẻm của AM,CN
=>EF là đường trung bình của hình thang ANCM
=>EF//CM//AN và \(EF=\frac{CM+AN}{2}=\frac{CM+CM}{2}=CM=AN\)
EF//CM
=>EF//CD
c: Ta có: \(NF=FC=\frac{NC}{2}\)
\(AE=EM=\frac{AM}{2}\)
mà NC=AM
nên NF=FC=AE=EM
Xét tứ giác BNDM có
BN//DM
BN=DM
Do đó: BNDM là hình bình hành
=>BD cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của BD
nên O là trung điểm của MN
Xét tứ giác NFME có
NF//ME
NF=ME
Do đó: NFME là hình bình hành
=>NM cắt FE tại trung điểm của mỗi đường
mà O là trung điểm của MN
nên O là trung điểm của FE

cccccccccccccccccccccccccccccccuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuutttttttttttttttttttttttttttttttttttt
Ghgghhhgghhhhhh