K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2024

Ghgghhhgghhhhhh

24 tháng 10 2016

Bạn tự vẽ hình nhá!!!!

a) ABCD là hình bình hành=>góc ADC=góc ABC => góc MBN=góc MDN

Mà: góc MBN= góc BNC( so le trong) => góc BNC=góc MDN => DM//BN

b) Từ phần a ta có:

Xét DMNB có  DM//BN

                      BM//DN (do AB//CD)

=> DMNB là hbh

c) Ta có:

góc AMD= góc MDC(so le trong) => góc ADM= góc AMD=> Tam giác AMD cân tại A

Mà: AH là đường phân giác=> AH là đường cao<=> AH vuông góc với DM (1)

=>AG vuông góc với BN ( do DM//BN)     (2)

Tương tự, ta cũng chứng minh được tam giác BNC cân tại C

Mà: CF là đường PG=> CF vuông góc với BN (3)

Từ (1); (2); (3) => HEFG là hcn do có 3 góc vuông

19 tháng 10 2021

a: Xét ΔADM và ΔCBN có 

\(\widehat{ADM}=\widehat{CBN}\)

AD=CB

\(\widehat{A}=\widehat{C}\)

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

19 tháng 10 2021

a: Xét ΔADM và ΔCBN có

\(\widehat{ADM}=\widehat{CBN}\)

AD=CB

\(\widehat{A}=\widehat{C}\)

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

loading...  loading...  

a: Xét ΔADN và ΔCBM có

góc A=góc C

AD=CB

góc ADN=góc CBM

=>ΔADN=ΔCBM

b: ΔADN=ΔCBM

=>AN=CM

AN+NB=AB

CM+MD=CD

mà AN=CM và AB=CD

nên NB=MD

mà NB//MD

nên NBMD là hình bình hành

c: Xét tứ giác AMCN có

AN//CM

AN=CM

=>AMCN là hình bình hành

22 tháng 9 2019

bn tự kẻ hình nha!

a) ta có: AB = DC ( ACBD là hình bình hành)

----> BM = CN ( = 1/2. AB = 1/2 . DC)

mà BM // CN

-----> BMNC là h.b.h

b) xét tam giác AMD và tam giác CNB

có: AM = CN ( = 1/2.AB = 1/2.CD)

AD = BC (gt)

^DAM = ^NCB (gt)

-----> tg AMD = tg CNB (c-g-c)

-----> DM = NB ( 2 cạnh t/ ư)

c) AN cắt DM tại I, MC cắt BN tại K. chứng minh : AC,BD,MN,IK

bài làm

Gọi AC cắt DB tại E

ta có: tg AMD = tg CNB (cmt)

-----> ^AMD = ^CNB

mà ^AMD = ^MDN ( AB//DC)

-----> ^CNB = ^MDN

mà ^CNB, ^MDN nằm ở vị trí đồng vị 

-----> DM// BN

và DM = BN (pb)

-----> DMBN là h.b.h

-------> BD cắt MN tại E ( do 2 đường chéo của h.b.h cắt nhau tại trung điểm của mỗi đường)

tương tự  bn cx chứng minh: MINK là h.b.h   ( MI = NK = 1/2.DM = 1/2.BN)

-----> MN cắt IK tại E

------------> AC,BD, MN,IK đồng quy tại E

a: Ta có: \(\hat{DAM}=\hat{BAM}=\frac12\cdot\hat{DAB}\) (AM là phân giác của góc DAB)

\(\hat{BCN}=\hat{DCN}=\frac12\cdot\hat{BCD}\) (CN là phân giác của góc BCD)

\(\hat{DAB}=\hat{DCB}\) (ABCD là hình bình hành)

nên \(\hat{DAM}=\hat{BAM}=\hat{BCN}=\hat{DCN}\)

Xét ΔMDA và ΔNBC có

\(\hat{MDA}=\hat{NBC}\)

DA=BC

\(\hat{MAD}=\hat{NCB}\)

Do đó: ΔMDA=ΔNBC

=>MA=NC và DM=BN

Ta có: DM+MC=DC

BN+NA=BA

mà DM=BN và DC=BA

nên MC=NA

Xét tứ giác ANCM có

AN//CM

AN=CM

Do đó: ANCM là hình bình hành

=>AM//CN

b: Ta có: \(\hat{DAM}=\hat{BAM}\) (AM là phân giác của góc BAD)

\(\hat{BAM}=\hat{AMD}\) (hai góc so le trong, AB//CD)

Do đó: \(\hat{DAM}=\hat{DMA}\)

=>ΔDAM cân tại D

Ta có: \(\hat{BNC}=\hat{NCD}\) (hai góc so le trong, BA//CD)

\(\hat{BCN}=\hat{NCD}\) (CN là phân giác của góc CBD)

Do đó: \(\hat{BNC}=\hat{BCN}\)

=>ΔBNC cân tại B

ΔDAM cân tại D

mà DE là đường phân giác

nên E là trung điểm của AM

ΔBNC cân tại B

mà BF là đường phân giác

nên F là trung điểm của NC

Xét hình thang ANCM có

E,F lần lượt là trung điẻm của AM,CN

=>EF là đường trung bình của hình thang ANCM

=>EF//CM//AN và \(EF=\frac{CM+AN}{2}=\frac{CM+CM}{2}=CM=AN\)

EF//CM

=>EF//CD

c: Ta có: \(NF=FC=\frac{NC}{2}\)

\(AE=EM=\frac{AM}{2}\)

mà NC=AM

nên NF=FC=AE=EM

Xét tứ giác BNDM có

BN//DM

BN=DM

Do đó: BNDM là hình bình hành

=>BD cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của BD

nên O là trung điểm của MN

Xét tứ giác NFME có

NF//ME

NF=ME

Do đó: NFME là hình bình hành

=>NM cắt FE tại trung điểm của mỗi đường

mà O là trung điểm của MN

nên O là trung điểm của FE

25 tháng 10 2018

cccccccccccccccccccccccccccccccuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuutttttttttttttttttttttttttttttttttttt