Cho tam giác MNK cân tại M có KT là đường cao. Tính độ dài KT nếu biết MK= 25cm và NK=30cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng định lý Py-ta-go cho tam giác MNP vuông tại M:
\(MN^2+MP^2=NP^2\)
Thay số: \(7^2+MP^2=25^2\)
\(\Rightarrow MP=24\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông MNP, đường cao MH ta có:
\(MK.NP=MN.MP\)
Thay số: \(MK.25=7.24\Rightarrow MK=6,72\left(cm\right)\)
Áp dụng định lý Py - ta - go cho tam giác MNK vuông tại K ta có:
\(MK^2+NK^2=MN^2\)
Thay số: \(6,72^2+NK^2=7^2\Rightarrow NK=1,96cm\)

Xét tam giác vuông MNK có: \(NK^2=MK^2+NM^2\)(định lí Py-ta-go) \(NK^2=17^2+15^2\) \(NK^2=\)\(289+225=514\) \(NK=\sqrt{514}\)


Áp dụng định lý Py Ta Go vào tam giác MNK ta được:
NK^2=NM^2+MK^2
NK^2=9^2+12^2
NK^2=81+144
NK^2=225
=>NK=15

a: Xét ΔABC có
N là trung điểm của BC
NK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
N là trung điểm của BC
K là trung điểm của AC
Do đó: NK là đường trung bình của ΔBAC
Suy ra: \(NK=\dfrac{1}{2}AB\left(1\right)\)
b: Xét ΔABC có
N là trung điểm của BC
M là trung điểm của AB
Do đó: NM là đường trung bình của ΔABC
Suy ra: \(NM=\dfrac{AC}{2}\left(2\right)\)
Ta có: ΔBAC cân tại A
nên \(AB=AC\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra NM=NK
Xét ΔNMK có NM=NK
nên ΔNMK cân tại N

a: Xét ΔABM vuông tại A và ΔNBM vuông tại N có
BM chung
\(\widehat{ABM}=\widehat{NBM}\)
Do đó: ΔABM=ΔNBM
=>\(\widehat{AMB}=\widehat{NMB}\)
=>MB là phân giác của góc AMN
b: Ta có: NK//BM
=>\(\widehat{BMN}=\widehat{KNM}\)(hai góc so le trong) và \(\widehat{MKN}=\widehat{AMB}\)(hai góc đồng vị)
mà \(\widehat{NMB}=\widehat{AMB}\)
nên \(\widehat{KNM}=\widehat{MKN}\)
=>ΔMKN cân tại M

a) Xét ΔBCA có \(BA^2=BC^2+CA^2\left(25^2=15^2+20^2\right)\)
nên ΔBCA vuông tại C(Định lí Pytago đảo)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại C có CH là đường cao ứng với cạnh huyền AB, ta được:
\(\left\{{}\begin{matrix}CH\cdot AB=CA\cdot CB\\CA^2=AH\cdot AB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH\cdot25=15\cdot20=300\\AH\cdot25=20^2=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CA=12\left(cm\right)\\AH=16\left(cm\right)\end{matrix}\right.\)
Kẻ MH là đường cao tại M của ΔMNK
ΔMNK cân tại M
mà MH là đường cao
nên H là trung điểm của NK
=>\(HN=HK=\dfrac{NK}{2}=15\left(cm\right)\)
ΔMHN vuông tại H
=>\(MH^2+HN^2=MN^2\)
=>\(MH=\sqrt{25^2-15^2}=20\left(cm\right)\)
Xét ΔMNK có
MH,KT là các đường cao
nên \(S_{MNK}=\dfrac{1}{2}\cdot MH\cdot NK=\dfrac{1}{2}\cdot KT\cdot MN\)
=>\(KT\cdot25=20\cdot30=600\)
=>KT=600/25=24(cm)