tinh gia tri cua bieu thuc B=1.2.3+2.3.4+3.4.5+5.6.7+...+17.18.19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(D=\frac{30}{1.2.30}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)
\(=15.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(=15.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=15.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=15.\frac{8249}{9900}=\frac{8249}{660}\)
\(D=\frac{30}{1.2.3}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)
\(=15\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(=15\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=15\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=15.\frac{4949}{9900}=\frac{4949}{660}\)
Vậy \(D=\frac{4949}{660}\).

Bạn ghi bị lộn đề rồi, hai số cuối phải là \(97.98.99\)và \(98.99.100\)
\(4A=1.2.3.4+2.3.4.4+3.4.5.4+...+97.98.99.4+98.99.100.4\)
\(=1.2.3.4+2.3.4\left(5-1\right)+3.4.5\left(6-2\right)+...+97.98.99\left(100-96\right)+98.99.100.\left(101-97\right)\)
\(=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100\)
\(=98.99.100.101=97990200\Rightarrow A=\frac{97990200}{4}=24497550\)

1) Đặt \(A=1.2+2.3+3.4+....+98.99\)
Ta có:\(3A=3.\left(1.2+2.3+3.4+....+98.99\right)\)
\(3A=1.2.3+2.3.3+3.4.3+....+98.99.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+....+98.99.\left(100-97\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+98.99.100-97.98.99\)
\(3A=98.99.100\Rightarrow A=\frac{98.99.100}{3}=323400\)
Ta có:\(\frac{A.y}{1}=184800\Rightarrow y=184800:323400=\frac{4}{7}\)
2)Đặt \(A=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\right).1428+185,8\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{37.38.39}\)
Tổng quát:\(\frac{2}{\left(a-1\right)a\left(a+1\right)}=\frac{1}{\left(a-1\right)a}-\frac{1}{a\left(a+1\right)}\)
Ta có:
\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.....+\frac{2}{37.38.39}\)
\(2B=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\left(\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(2B=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\Rightarrow B=\frac{370}{741}:2=\frac{185}{741}\)
Khi đó \(A=\frac{185}{741}.1428+185,8=...........\) (tự tính ra)
(*)số ko đẹp mấy



Khi gặp dạng như thế này, ta xét số hạng như thế này thì ta sẽ có được số cần nhân chính là số liền sau của số cuối cùng trong tích đó. Nói dễ hiểu hơn là nếu có A = 1.2 + 2.3 + 3.4 +... thì ta xét số hạng đầu tiên của tổng là 1.2 thì ta có số liền sau của 2 là 3. Vậy nên nhân A cho 3. Cái này gọi là quy luật để giải quyết bài toán kiểu này rồi.

\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{17\cdot18\cdot19}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{17\cdot18}-\dfrac{1}{18\cdot19}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{342}\right)=\dfrac{1}{2}\cdot\dfrac{85}{171}=\dfrac{85}{342}\)

Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 + ... + 17 . 18 . 19 + 18 . 19 . 20
=> 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 4 + 3 . 4 . 5 . 4 + ... + 17 . 18 . 19 . 4 + 18 . 19 . 20 . 4
4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . ( 5 - 1 ) + 3 . 4 . 5 . ( 6 - 2 ) + ... + 17 . 18 . 19 . ( 20 - 16 ) + 18 . 19 . 20 . ( 21 - 17 )
4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 1 . 2 . 3 . 4 + 3 . 4 . 5 . 6 - 2 . 3 . 4 . 5+ ... + 17.18.19.20 - 16.17.18.19 + 18.19.20.21 -17.18.19.20
4A = 18 . 19 . 20 . 21
=> A = 18 . 19 . 20 . 21 : 4
A = 35 910
Đặt M = 1.2.3+2.3.4 + 3.4.5+...+17.18.19+18.19.20
=> 4M = 1.2.3.4+2.3.4.4+3.4.5.4+...+17.18.19.4+18.19.20
4M = 1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+...+17.18.19.(20-16)+18.19.20.(21-17)
4M = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ...+17.18.19.20 - 16.17.18.19 + 18.19.20.21 - 17.18.19.20
4M = ( 1.2.3.4 + 2.3.4.5 + 3.4.5.6 + ...+ 17.18.19.20+18.19.20.21) - (1.2.3.4+2.3.4.5+...+16.17.18.19+17.18.19.20)
4M = 18.19.20.21
\(M=\frac{18.19.20.21}{4}\)