Chứng tỏ rằng n+3 và 2n+5 là 2 số nguyên tố cùng nhau
Nhờ mọi người ai bít thì giải hộ mk ha :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN của 2n+3 và 3n+4 là d ( d thuộc N sao )
=> 2n+3 và 3n+4 đều chia hết cho d
=> 3.(2n+3) và 2.(3n+4) đều chia hết cho d
=> 6n+9 và 6n+8 đều chia hết cho d
=> 6n+9-(6n+8) chia hết cho d hay 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN của 2n+3 và 3n+4 là 1
=> 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
k mk nha
thank bn, nhớ ủng hộ mk những câu hỏi sau nha.....>_<
Gọi UCLN 2n + 3, n + 2 là d, khi đó:
\(\hept{\begin{cases}2n+3⋮d\\2\left(n+2\right)⋮d\end{cases}\Rightarrow2n+4-2n-3⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\) do n là số tự nhiên
Vậy (2n + 3,n + 2) = 1 (đpcm)
Gọi ƯCLN(2n+3;n+2)=d
Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d
=>2n+3 chia hết cho d; 2(n+2)chia hết cho d
=> 2n+3 chia hết cho d;2n+4 chia hết cho d
=>[2n+4-(2n+3)]chia hết cho d
=>2n+4-2n-3 chia hết cho d
=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1
Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau
Gọi ƯCLN(2n+3;n+2)=d
Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d
=>2n+3 chia hết cho d; 2(n+2)chia hết cho d
=> 2n+3 chia hết cho d;2n+4 chia hết cho d
=>[2n+4-(2n+3)]chia hết cho d
=>2n+4-2n-3 chia hết cho d
=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1
Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau
Chúc bạn học tốt!^_^
gọi d>0 là ước dung của 2n+1 và 6n+5
d là ước số 3(2n+1)=6n+3
(6n+5)_(6n+3)=2
suy ra d là ước của số lẻ :2n+1 suy ra d=1
vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau
**** nhé Thanh Lộc thông minh
a: Gọi d=ƯCLN(n+3;n+2)
=>n+3-n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>n+2 và n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+3;3n+5)
=>6n+9-6n-10 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>2n+3 và 3n+5là hai số nguyên tố cùng nhau
Gọi d=ƯCLN(2n+1;2n^2-1)
=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d
=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d
=>n+1 chia hết cho d và 2n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau
Gọi UCLN(n+3,2n+5) là d
Ta có: n+3 chia hết cho d => 2(n+3) chia hết cho d => 2n+6 chia hết cho d
2n+5 chia hết cho d
=> 2n+6 - (2n+5) chia hết cho d
=> 2n + 6 - 2n - 5 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> UCLN(n+3,2n+5) = 1
=> n+3 và 2n+5 là 2 số nguyên tó cùng nhau
Cảm ơn bạn na :)