\(1.3+2.4+3.5+.........+1998.2000\)
hãy tính tổng dãy trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=1.3+2.4+3.5+...+97.99+98.100B=1.3+2.4+3.5+...+97.99+98.100
B=1(2+1)+2(3+1)+....+97(98+1)+98(99+1)B=1(2+1)+2(3+1)+....+97(98+1)+98(99+1)
B=1.2+1+2.3+2+....+97.98+97+98.99+98B=1.2+1+2.3+2+....+97.98+97+98.99+98
B=(1.2+2.3+3.4+....+97.98+98.99)+(1+2+3+...+98)B=(1.2+2.3+3.4+....+97.98+98.99)+(1+2+3+...+98)
B=98.99.1003+98.992B=98.99.1003+98.992
B=323400+4851=328251B=323400+4851=328251
Số đó=1.3 + 2.4 + 3.5 +....+ 98.100
= 1(2+1) + 2.(3+1) + 3.(4+1) +...+ 98(99+1)
= 1.2 + 1 + 2.3 + 2 + 3.4 + 3+....+ 98.99 +98
= (1.2 + 2.3 + 3.4+....98.99) + (1+2+3+....+98)
=323400 + 4851=328251
A=1.3+2.4+3.5+....+99.101
A=1.(2+1)+2.(3+1)+.....+99.(100+1)
A=1.2+1+2.3+2+3.4+3+....+99.100+99
A=1.2+2.3+3.4+...+99.100+(1+2+3+4+....+99)
Đặt B=1.2+2.3+.....+99.100
=>3B=1.2.3+2.3.(4-1)+.....+99.100.(101-98)
=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+99.100.101-98.99.100
=>3B=99.100.101
=>B=33.100.101=333300
Đặt C=1+2+3+4..+99
=>C=(1+99).99:2=4950
=>A=333300+4950=338250
A=1.3+2.4+3.5+....+99.101
A=1.(2+1)+2.(3+1)+.....+99.(100+1)
A=1.2+1+2.3+2+3.4+3+....+99.100+99
A=1.2+2.3+3.4+...+99.100+(1+2+3+4+....+99)
Đặt B=1.2+2.3+.....+99.100
=>3B=1.2.3+2.3.(4-1)+.....+99.100.(101-98)
=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+99.100.101-98.99.100
=>3B=99.100.101
=>B=33.100.101=333300
Đặt C=1+2+3+4..+99
=>C=(1+99).99:2=4950
=>A=333300+4950=338250
A = 1.3 + 2.4 + 3.5 + ... + 99.101
A = 1.(2+1) + 2.(3+1) + 3.(4+1) + ... + 99.(100+1)
A = 1.2 + 1 + 2.3 + 2 + 3.4 + 3 + ... + 99.100 + 99
A = ( 1.2 + 2.3 + 3.4 + ... + 99.100 ) + ( 1 + 2 + 3 + ... + 99 )
đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100
3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
3B
Bạn giải chỉ tiết ra đi. Nêu bạn giải chi tiết mình tích đúng cho
S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102
= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)
= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100
= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)
Ta có công thức :
\(1.2+2.3+3.4+....+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
Áp dụng vào bài toán ta được :
\(S=\frac{100.101.102}{3}+\frac{100.101}{2}\)
= 343400 + 5050
= 348450