Chứng minh Chứng minh 1/3−2/3mũ2+3/3mũ2−4/3mũ4+5/3mũ5−...+99/3mũ99<169
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(A=3^1+3^2+3^3+3^4+...+3^{199}\)
\(3A=3^2+3^3+3^4+3^5+...+3^{200}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{200}\right)-\left(3^1+3^2+3^3+...+3^{199}\right)\)
\(2A=3^{200}-3^1\)
\(A=\frac{3^{200}-3}{2}\)
=))
Đặt \(A=3^1+3^2+3^3+...+3^{199}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{200}\)
Lấy 3A trừ A theo vế ta có :
\(3A-A=\left(3^2+3^3+3^4+..+3^{200}\right)-\left(3^1+3^2+3^3+..+3^{199}\right)\)
\(2A=3^{200}-1\)
\(A=\frac{3^{200}-1}{2}\)
Vậy \(3^1+3^2+3^3+..+3^{199}=\frac{3^{200}-1}{2}\)

Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=3\left(1-3+3^2-3^3+\cdots+3^{22}-3^{23}\right)\) ⋮3
Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=3\left(1-3\right)+3^3\left(1-3\right)+\cdots+3^{23}\left(1-3\right)\)
\(=3\cdot\left(-2\right)+3^3\cdot\left(-2\right)+\cdots+3^{23}\left(-2\right)\)
\(=-2\left(3+3^3+\cdots+3^{23}\right)\)
\(=-2\left\lbrack\left(3+3^3\right)+\left(3^5+3^7\right)+\cdots+\left(3^{21}+3^{23}\right)\right\rbrack\)
\(=-2\cdot\left\lbrack3\cdot\left(1+3^2\right)+3^5\left(1+3^2\right)+\cdots+3^{21}\left(1+3^2\right)\right\rbrack\)
\(=-2\cdot10\cdot\left(3+3^5+\cdots+3^{21}\right)=-20\cdot\left(3+3^5+\cdots+3^{21}\right)\) ⋮20
Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+\cdots-\left(3^{22}-3^{23}+3^{24}\right)\)
\(=3\left(1-3+3^2\right)-3^4\left(1-3+3^2\right)+\cdots+3^{22}\left(1-3+3^2\right)\)
\(=7\cdot\left(3-3^4+\cdots-3^{22}\right)\) ⋮7
Ta có: C⋮20
C⋮7
C⋮3
mà ƯCLN(20;3;7)=1
nên C⋮20*3*7
=>C⋮420

Đặt \(D=3-3^2+3^3-3^4+...+3^9-3^{10}+3^{11}\)
=> \(3D=3^2-3^3+3^4-3^5+...+3^{10}-3^{11}+3^{12}\)
Cộng vế 2 BT trên ta được:
\(D+3D=\left(3-3^2+...+3^{11}\right)+\left(3^2-3^3+...+3^{12}\right)\)
\(\Leftrightarrow4D=3^{12}+3\)
\(\Rightarrow D=\frac{3^{12}+3}{4}\)

Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=3\left(1-3+3^2-3^3+\cdots+3^{22}-3^{23}\right)\) ⋮3
Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=3\left(1-3\right)+3^3\left(1-3\right)+\cdots+3^{23}\left(1-3\right)\)
\(=3\cdot\left(-2\right)+3^3\cdot\left(-2\right)+\cdots+3^{23}\left(-2\right)\)
\(=-2\left(3+3^3+\cdots+3^{23}\right)\)
\(=-2\left\lbrack\left(3+3^3\right)+\left(3^5+3^7\right)+\cdots+\left(3^{21}+3^{23}\right)\right\rbrack\)
\(=-2\cdot\left\lbrack3\cdot\left(1+3^2\right)+3^5\left(1+3^2\right)+\cdots+3^{21}\left(1+3^2\right)\right\rbrack\)
\(=-2\cdot10\cdot\left(3+3^5+\cdots+3^{21}\right)=-20\cdot\left(3+3^5+\cdots+3^{21}\right)\) ⋮20
Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+\cdots-\left(3^{22}-3^{23}+3^{24}\right)\)
\(=3\left(1-3+3^2\right)-3^4\left(1-3+3^2\right)+\cdots+3^{22}\left(1-3+3^2\right)\)
\(=7\cdot\left(3-3^4+\cdots-3^{22}\right)\) ⋮7
Ta có: C⋮20
C⋮7
C⋮3
mà ƯCLN(20;3;7)=1
nên C⋮20*3*7
=>C⋮420

{ x2 - [ 62 - ( 82 - 9.7)3 - 7.5]3 - 5.3 }3 = 1
{ x2 + [ 36 - (64 - 63)3 - 35]3 - 15}3 = 1
[ x2 - ( 36 - 13 - 35 ) - 15 ]3 = 1
[ x2 - ( 36 - 1 - 35 ) - 15]3 = 1
[ x2 - ( 35 - 35 ) - 15]3 = 1
[ x2 - 0 - 15]3 = 1
( x2 - 15 )3 = 1
<=> ( x2 - 15)3 = 13
=> x2 - 15 = 1
<=> x2 = 16
=> x = 4