Bài 6: Cho hình vẽ biết AB = AC = BC = BD = CE. Tính số đo góc DAE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho hình vẽ, biết BD vuông góc với AC, AE vuông góc với AC, BC = 6, AB = x, CD = 3x, CE = 13,5. Tính x.
#Hỏi cộng đồng OLM
#Toán lớp 8

\(\Delta\)ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí)
mà \(\widehat{B}=\widehat{C}\)
=> \(\widehat{A}+2\widehat{B}=180^0\)
=> \(\widehat{A}=180^0-2\widehat{B}\)
=> \(180^0-2\widehat{B}=80^0\)
=> \(2\widehat{B}=100^0\)
=> \(\widehat{B}=50^0\)
Do đó \(\widehat{B}=\widehat{C}=50^0\)
Ta có : BD = BA => \(\Delta\)ABD cân tại B => \(\widehat{BAD}=\widehat{BDA}\)
\(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{B}}{2}=\frac{180^0-50^0}{2}=65^0\)
=> \(\widehat{BAD}=65^0\)
CE = CA => \(\Delta\)ACE cân tại C => \(\widehat{CAE}=\widehat{CEA}\)
Do đó \(\widehat{CAE}=\widehat{CEA}=\frac{180^0-\widehat{C}}{2}=\frac{180^0-50^0}{2}=65^0\)
=> \(\widehat{CAE}=65^0\)
Xét \(\Delta\)DAE theo định lí tổng ba góc trong 1\(\Delta\))
=> \(\widehat{BAD}+\widehat{CAE}+\widehat{DAE}=180^0\)
=> \(65^0+65^0+\widehat{DAE}=180^0\)
=> \(\widehat{DAE}=180^0-130^0=50^0\)
Vậy \(\widehat{DAE}=50^0\)

đừng tích ai nhá, tôi về mình giải cho, giờ mik phải đi học thêm

Tự vẽ hình.
a) Ta có: \(AB^2+AC^2=8^2+6^2=100\); \(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
Theo định lý Pytago đảo \(\Rightarrow\Delta ABC\) vuông tại \(A\).
b) Xét tam giác \(IBC\). Theo định lý tổng 3 góc trong tam giác ta có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\\ \Rightarrow\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)\\ \Rightarrow\widehat{BIC}=180^0-\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\\ \Rightarrow\widehat{BIC}=180^0-\dfrac{1}{2}\left(180^0-\widehat{A}\right)\\ \Rightarrow\overrightarrow{BIC}=180^0-\dfrac{1}{2}\left(180^0-90^0\right)=135^0\)