K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2023

Áp dụng bất đẳng thức Cô si cho hai số dương ta có:

(a2 + b2) + (b2 + c2) + (c2 + a2) ≥ 2ab + 2bc + 2ca

=> 2(a2 + b2 + c2 ) ≥ 2 (ab + bc + ca) (1) (a2 + 1) + (b2 + c2) + (c2 + a2) ≥ 2a + 2b + 2c

=> a2 + b2 + c2 + 3 ≥ 2(a + b + c) (2)

Cộng các vế của (1) và (2) ta có:

3 ( a2 + b2 + c2 ) + 3 ≥ 2 (ab + bc + ca + a + b + c)

=> 3( a2 + b2 + c2 ) + 3 ≥ 12 => a2 + b2 + c2 ≥ 3.

Ta có: (a^3/b + ab ) + ( b^3/c + bc ) + ( c^3/a + ca)≥ 2(a2 + b2 + c2) (CÔ SI) 

<=>a^3/b + b^3/c + c^3/a +ab + bc + ac  ≥ 2(a2 + b2 + c2)

Vì a2 + b2 + c2 ≥ ab + bc + ca => a^3 + b^3 + c^3 ≥ a2 + b2 + c2 ≥ 3 (đpcm).

25 tháng 6 2023

Áp dụng bất đẳng thức cô-si cho hai số dương ta có:

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (1)

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2a+2b+2c\)

\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\) (2)

Cộng (1) với (2)

\(3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Ta có: \(\left(\dfrac{a^3}{b}+ab\right)+\left(\dfrac{b^3}{c}+bc\right)+\left(\dfrac{c^3}{a}+ca\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\)

Vì \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\ge3\) (đpcm).

14 tháng 9

cíu toi với

cần gấp lắm các bạn

Từ giả thiết 𝑎 3 + 𝑏 3 = 𝑎 − 𝑏 a 3 +b 3 =a−b và 𝑎 , 𝑏 > 0 a,b>0 suy ra 𝑎 − 𝑏 > 0 a−b>0, tức 𝑎 > 𝑏 a>b. Viết lại phương trình dưới dạng ( 𝑎 3 − 𝑎 ) + ( 𝑏 3 + 𝑏 ) = 0 ⟹ 𝑎 ( 𝑎 2 − 1 ) + 𝑏 ( 𝑏 2 + 1 ) = 0. (a 3 −a)+(b 3 +b)=0⟹a(a 2 −1)+b(b 2 +1)=0. Vì 𝑏 ( 𝑏 2 + 1 ) > 0 b(b 2 +1)>0 (do 𝑏 > 0 b>0), nên phải có 𝑎 ( 𝑎 2 − 1 ) < 0 a(a 2 −1)<0. Do 𝑎 > 0 a>0 nên 𝑎 2 − 1 < 0 a 2 −1<0, tức 𝑎 2 < 1 ⇒ 0 < 𝑎 < 1. a 2 <1⇒0<a<1. Từ phương trình ban đầu ta cũng có 𝑏 ( 𝑏 2 + 1 ) = 𝑎 − 𝑎 3 . b(b 2 +1)=a−a 3 . Vì 𝑏 2 + 1 > 1 b 2 +1>1 nên 𝑏 = 𝑎 − 𝑎 3 𝑏 2 + 1 < 𝑎 − 𝑎 3 . b= b 2 +1 a−a 3 <a−a 3 . Do đó 𝑎 + 𝑏 < 𝑎 + ( 𝑎 − 𝑎 3 ) = 2 𝑎 − 𝑎 3 . a+b<a+(a−a 3 )=2a−a 3 . Nhân hai vế với 𝑎 > 0 a>0 được 𝑎 ( 𝑎 + 𝑏 ) < 𝑎 ( 2 𝑎 − 𝑎 3 ) = 2 𝑎 2 − 𝑎 4 . a(a+b)<a(2a−a 3 )=2a 2 −a 4 . Xét hàm 𝑓 ( 𝑎 ) = 2 𝑎 2 − 𝑎 4 f(a)=2a 2 −a 4 trên khoảng 0 < 𝑎 < 1 0<a<1. Ta có 𝑓 ′ ( 𝑎 ) = 4 𝑎 − 4 𝑎 3 = 4 𝑎 ( 1 − 𝑎 2 ) > 0 (v ı ˋ   0 < 𝑎 < 1 ) , f ′ (a)=4a−4a 3 =4a(1−a 2 )>0(v ı ˋ  0<a<1), nên 𝑓 f tăng trên ( 0 , 1 ) (0,1) và do đó 𝑓 ( 𝑎 ) < 𝑓 ( 1 ) = 1 f(a)<f(1)=1. Kết hợp với bất đẳng thức trên suy ra 𝑎 ( 𝑎 + 𝑏 ) < 1. a(a+b)<1. Trở về mục tiêu, từ phân tích ban đầu (chia cả hai vế 𝑎 3 + 𝑏 3 = 𝑎 − 𝑏 a 3 +b 3 =a−b cho 𝑎 + 𝑏 a+b) 𝑎 2 − 𝑎 𝑏 + 𝑏 2 = 𝑎 − 𝑏   𝑎 + 𝑏   = 1 − 2 𝑏 𝑎 + 𝑏 , a 2 −ab+b 2 = a+b a−b =1− a+b 2b , nên 𝑎 2 + 𝑏 2 + 𝑎 𝑏 = ( 𝑎 2 − 𝑎 𝑏 + 𝑏 2 ) + 2 𝑎 𝑏 = 1 − 2 𝑏 𝑎 + 𝑏 + 2 𝑎 𝑏 . a 2 +b 2 +ab=(a 2 −ab+b 2 )+2ab=1− a+b 2b +2ab. Vì 𝑎 ( 𝑎 + 𝑏 ) < 1 a(a+b)<1 tương đương 𝑎 < 1 𝑎 + 𝑏 a< a+b 1 , suy ra 2 𝑎 𝑏 < 2 𝑏 𝑎 + 𝑏 2ab< a+b 2b . Do đó 1 − 2 𝑏 𝑎 + 𝑏 + 2 𝑎 𝑏 < 1 , 1− a+b 2b +2ab<1, tức   𝑎 2 + 𝑏 2 + 𝑎 𝑏 < 1   . a 2 +b 2 +ab<1 .

4 tháng 5 2016

Đặt \(a=\frac{x}{y},b=\frac{y}{z},c=\frac{z}{x}\),rồi thya vào dễ rồi!

18 tháng 4 2017

ta co:

      a-b=a^3+b^3

a-b-b^3=a^3

Mà một số luôn nhỏ hơn hoặc bằng chính nó lũy thừa 3

Nhưng a-b-b^3=a^3 nên b=0

Mà a=a^3 suy ra a=1

28 tháng 4 2024

nếu nhưtrong trường hợp a<= 1 thì a >= a^3 chứ?

NV
20 tháng 3 2022

\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)

Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)

Gọi vế trái của BĐT cần chứng minh là P:

\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{1}{x^2}+8x+8x\right)+\left(\dfrac{1}{y^2}+8y+8y\right)-15\left(x+y\right)\)

\(P\ge3\sqrt[3]{\dfrac{64x^2}{x^2}}+3\sqrt[3]{\dfrac{64y^2}{y^2}}-15.1=9\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)