K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

14 tháng 12 2022

Mình không nhìn thấy câu hỏi, giờ mới thấy bạn ạ

Do mở rộng cạnh của  thửa đất về cả bốn phía nên thửa đất mới sau khi mở rộng cũng là hình vuông. mỗi cạnh của thửa đất lúc sau đã tăng :

       0,5 x 2 = 1 (m)

Gọi cạnh hình vuông lúc đầu là x đk x > 0

Thì cạnh hình vuông lúc sau là : x + 1

theo bài ra ta có : (x + 1)( x + 1)  - x2 = 20

                           x2 + x + x + 1 - x2 = 20

                                              2x = 20 -1

                                                2x = 19

                                                  x = 19: 2

                                                  x = 9,5

Kết luận cạnh hình vuông lúc đầu là 9,5 m 

 

21 tháng 10 2021

Bài 1: 

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)

hay MN//BP và MN=BP

Xét tứ giác BMNP có 

MN//BP

MN=BP

Do đó: BMNP là hình bình hành

27 tháng 11 2021

tách nhỏ câu hỏi ra

7 tháng 1 2022

16C

17A

18B

19D

20C

21C

22A 

7 tháng 1 2022

16 C

17 A

18 B

19 D

20 C

21 C

22 A 

a:

Gọi O là trung điểm của AD

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó:ΔACD vuông tại C
Xét tứ giác EFDC có \(\widehat{EFD}+\widehat{ECD}=90^0+90^0=180^0\)

nên EFDC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{BCA}\) là góc nội tiếp chắn cung BA

\(\widehat{BDA}\) là góc nội tiếp chắn cung BA

Do đó: \(\widehat{BCA}=\widehat{BDA}\)

mà \(\widehat{BDA}=\widehat{ACF}\)(ECDF là tứ giác nội tiếp)

nên \(\widehat{BCA}=\widehat{ACF}\)

=>CA là phân giác của góc BCF

17 tháng 11 2021

bn ơi bài nào ghi rõ nha

25 tháng 8

Bài 1

loading...

a) Do ∆ABC cân tại A (gt)

⇒ ∠ABC = ∠ACB và AB = AC

Do BD là tia phân giác của ∠ABC (gt)

⇒ ∠ABD = ∠ABC : 2

Do CE là tia phân giác của ∠ACB (gt)

⇒ ∠ACE = ∠ACB : 2

Mà ∠ABC = ∠ACB (cmt)

⇒ ∠ABD = ∠ACE

Xét ∆ABD và ∆ACE có:

∠ABD = ∠ACE (cmt)

AB = AC (cmt)

∠A chung

⇒ ∆ABD = ∆ACE (g-c-g)

⇒ AD = AE (hai cạnh tương ứng)

⇒ ∆ADE cân tại A

⇒ ∠AED = (180⁰ - ∠DAE) : 2 = (180⁰ - ∠BAC) : 2 (1)

Do ∆ABC cân tại A (gt)

⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)

Từ (1) và (2) ⇒ ∠AED = ∠ABC

Mà ∠AED và ∠ABC là hai góc đồng vị

⇒ ED // BC

⇒ BEDC là hình thang

Lại có ∠ABC = ∠ACB (cmt)

⇒ ∠EBC = ∠DCB

⇒ BEDC là hình thang cân

b) Do ∠C = 50⁰ (gt)

⇒ ∠DCB = ∠EBC = 50⁰

⇒ ∠AED = ∠EBC = 50⁰

Mà ∠AED + ∠BED = 180⁰ (kề bù)

⇒ ∠BED = 180⁰ - ∠AED = 180⁰ - 50⁰ = 130⁰

⇒ ∠CDE = ∠BED = 130⁰

Bài 4:

a: Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\)

nên DE//BC

Xét tứ giác BDEC có DE//BC và \(\hat{DBC}=\hat{ECB}\) (ΔABC cân tại A)

nên BDEC là hình thang cân

b: BD=DE

=>ΔDEB cân tại D

=>\(\hat{DEB}=\hat{DBE}\)

\(\hat{DEB}=\hat{EBC}\) (hai góc so le trong, DE//BC)

nên \(\hat{DBE}=\hat{CBE}\)

=>\(\hat{ABE}=\hat{CBE}\)

=>BE là phân giác của góc ABC

=>E là chân đường phân giác kẻ từ B xuống AC của ΔABC

Ta có: ED=EC

=>ΔEDC cân tại E

=>\(\hat{EDC}=\hat{ECD}\)

\(\hat{EDC}=\hat{DCB}\) (hai góc so le trong, ED//BC)

nên \(\hat{ECD}=\hat{BCD}\)

=>\(\hat{ACD}=\hat{BCD}\)

=>CD là phân giác của góc ACB

=>D là chân đường phân giác kẻ từ C xuống AB của ΔABC

Bài 3:

a: ΔCAD vuông tại C

=>\(\hat{CAD}+\hat{CDA}=90^0\)

=>\(\hat{CAD}=90^0-60^0=30^0\)

AC là phân giác của góc BAD

=>\(\hat{BAD}=2\cdot\hat{CAD}=2\cdot30^0=60^0\)

Xét hình thang ADCB có \(\hat{BAD}=\hat{CDA}\left(=60^0\right)\)

nên ADCB là hình thang cân

b: Qua B, kẻ BK⊥AD tại K

Qua C, kẻ CH⊥AD tại H

=>BK//CH

Xét ΔBKA vuông tại K và ΔCHD vuông tại H có

BA=CD
\(\hat{BAK}=\hat{CDH}\)

Do đó: ΔBKA=ΔCHD

=>BK=CH và AK=HD

Gọi M là trung điểm của CD

Trên tia đối của tia MH, lấy E sao cho MH=ME

=>M là trung điểm của HE

Xét tứ giác CHDE có

M là trung điểm chung của CD và HE

=>CHDE là hình bình hành

Hình bình hành CHDE có \(\hat{CHD}=90^0\)

nên CHDE là hình chữ nhật

=>CD=HE

\(CM=MD=\frac{CD}{2};MH=ME=\frac{HE}{2}\)

nên \(CM=MD=MH=ME\)

Xét ΔDMH có MH=MD và \(\hat{MDH}=60^0\)

nên ΔMDH đều

=>DH=MD=CD/2

Ta có: BC//AD

=>\(\hat{BCA}=\hat{CAD}\) (hai góc so le trong)

\(\hat{CAD}=\hat{BAC}\)

nên \(\hat{BCA}=\hat{BAC}\)

=>BA=BC

mà BA=CD

nên BA=BC=CD

AK=HD

\(HD=\frac{CD}{2}\)

nên \(AK=HD=\frac{CD}{2}\)

Xét tứ giác BCHK có

BC//HK

BK//CH

Do đó: BCHK là hình bình hành

=>BC=HK

=>\(HK=CD\)

AD=AK+KH+HD

\(=\frac{CD}{2}+CD+\frac{CD}{2}=2CD\)

Chu vi hình thang ABCD là:

AB+BC+CD+DA=20

=>CD+CD+CD+2CD=20

=>5CD=20

=>CD=4(cm)

=>\(AD=2\cdot4=8\left(\operatorname{cm}\right)\)

Bài 2:

a: Xét ΔABD và ΔBAC có

BA chung

BD=AC

AD=BC

Do đó: ΔABD=ΔBAC

=>\(\hat{ABD}=\hat{BAC}\)

=>\(\hat{OAB}=\hat{OBA}\)

=>OA=OB

ta có: OA+OC=AC

OB+OD=BD

mà OA=OB và AC=BD

nên OC=OD

b: Xét ΔEDC có \(\hat{EDC}=\hat{ECD}\)

nên ΔEDC cân tại E

=>ED=EC

Ta có: EA+AD=ED

EB+BC=EC

mà ED=EC và AD=BC

nên EA=EB

Ta có: EA=EB

=>E nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

từ (1),(2) suy ra EO là đường trung trực của AB

Ta có: EC=ED

=>E nằm trên đường trung trực của CD(3)

ta có: OC=OD

=>O nằm trên đường trung trực của CD(4)

Từ (3),(4) suy ra EO là đường trung trực của CD