Chứng minh rằng tồn tại 1 lũy thừa của 7 mà 3 chữ số tận cùng của nó là 001
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lập dãy số :35;36;37;.....;3106
Ta có:100 số có dạng :00;01;02;...;99 .Theo nguyên tắc Đi-rich-lê , có 101 số có dạng 2 chữ số tận cùng nên có 2 số có 2 chữ số tận cùng giống nhau và hiệu của chúng chia hết cho 100.
Gỉa sử tồn tại hai số 13m và 13n (m>n , m,n \(\in N\))
Ta có:(13m-13n)chia hết cho 100
\(\Rightarrow13^n\left(13^{m-n}-1\right)\)chia hết cho 100
Mà ƯCLN(13,100)=1 nên 13n không chia hết cho 100
\(\Rightarrow13^{m-n}-1\)chia hết cho 100 . Nên 13m-n tận cùng là 01
Vây tồn tại một lũy thừa của 13 có 2 chữ số tận cùng là 01

Xét 10001 số hạng 2019,20192,...,201910001
Theo nguyên lí Dirichlet co 2 số có cùng số dư khi chia co 10000
Gọi 2 số đó là 2019m và 2019n(m,n là số tự nhiên, m>n)=> 2019m-2019n=....0000
Vậy............

#)Góp ý :
Bạn tham khảo nhé :
Câu hỏi của tth - Toán lớp 7 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/218057796597.html


bn tham khảo câu hỏi này nhé:
https://olm.vn/hoi-dap/detail/98207379947.html
k nha
^-^
Xét 1001 số \(3;3^2;3^3;.....;3^{1001}\) thì tồn tại 2 số khi chia cho 1000 có cùng số dư.
Giả sử 2 số \(3^m;3^n\left(1\le n< m\le1001\right)\) khi chia cho 1000 có cùng số dư.
Khi đó \(3^m-3^n⋮1000\)
\(\Rightarrow3^n\left(3^{m-n}-1\right)⋮1000\)
Lại có \(\left(3^n;1000\right)=1\Rightarrow3^{m-n}-1⋮1000\)
\(\Rightarrow3^{m-n}=\overline{....001}\)
\(\Rightarrowđpcm\)