Cho tứ giác ABCD có cạnh BC=10 cm, CD=13cm,AD=15 cm.Có góc A và góc B bằng 90 độ. Tính cạnh BA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét tứ giác ABKD có \(\hat{BAD}=\hat{ADK}=\hat{BKD}=90^0\)
nên ABKD là hình chữ nhật
=>AB=DK và BK=AD
AB=DK
mà AB=4cm
nên DK=4cm
Ta có: DK+KC=DC
=>KC=DC-DK=9-4=5(cm)
ΔBKC vuông tại K
=>\(BK^2+KC^2=BC^2\)
=>\(BK^2=13^2-5^2=144=12^2\)
=>BK=12(cm)
mà BK=AD
nên AD=12cm
M là trung điểm của AD
=>\(AM=MD=\frac{AD}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)
b: Xét ΔABM vuông tại A và ΔDMC vuông tại D có
\(\frac{AB}{DM}=\frac{AM}{DC}\left(\frac46=\frac69=\frac23\right)\)
Do đó: ΔABM~ΔDMC
c: ΔABM~ΔDMC
=>\(\hat{ABM}=\hat{DMC}\)
mà \(\hat{ABM}+\hat{AMB}=90^0\) (ΔAMB vuông tại A)
nên \(\hat{DMC}+\hat{AMB}=90^0\)
Ta có: \(\hat{AMB}+\hat{BMC}+\hat{CMD}=180^0\)
=>\(\hat{BMC}=180^0-90^0=90^0\)

a) Xét \(\Delta ACD\) vuông tại C, có:
\(CAD+ADC=90\) độ \(\Rightarrow ADC=90độ-ADC=90-60=30độ\)
AC là pgiac BAD=> \(CAD=CAB=\dfrac{1}{2}BAD\Rightarrow BAD=2CAD=2.30=60độ\)
Hình thang ABCD, có: BAD=CAD=60 độ=> ABCD là hình thang cân
b) \(\Delta ACD\) vuông tại C có : DAC=30 độ => \(CD=\dfrac{1}{2}AD\) (đlí)
BC//AD=>BCA=CAD (so le trong)
Mà BAC=DAC (cm a)
=> BAC=BCA => tam giác ABC cân tại A =>BC=AB
ABCD là hthang cân => AB=CD
Ta có: \(P_{ABCD}=AB+BC+CD+AD=CD+CD+CD+2CD=20\)
\(\Leftrightarrow CD=\dfrac{20}{5}=4\left(cm\right)\Rightarrow AD=2.CD=2.4=8\left(cm\right)\)
Bạn áp dụng Pytago là được!