K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

Khó quá!

1:

ΔOAB vuông tại O

=>AB^2=AO^2+BO^2

ΔBOC vuông tại O

=>BC^2=BO^2+CO^2

ΔAOD vuông tại O

=>AD^2=AO^2+DO^2

ΔDOC vuông tại O

=>DC^2=OC^2+OD^2

AB^2+BC^2+CD^2+DA^2

=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2

=2(OA^2+OB^2+OC^2+OD^2)

2:

AB^2+CD^2

=OA^2+OB^2+OC^2+OD^2

=OA^2+OD^2+OB^2+OC^2

=AD^2+BC^2

14 tháng 7 2015

bạn hỏi thế này thì chả ai muốn làm -_- dài quá 

28 tháng 12 2015

Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!

22 tháng 9 2016

cho mình xin lỗi ,câu c mình ghi sai 1 câu nhưng ko quan trọng lắm

"hình bình hành có 2 cạnh kề bằng nhau là hình thoi,bạn xem lại nhan,do mình bấm vội nhưng giải đúng đó

22 tháng 9 2016

bạn ghi đề sai rồi ,phải là AB=BC=AD và CD=2AB nhan

hình bạn tự vẽ đi nhan

câu a:ta có AB//CD(vì ABCD là hình thang) nên góc BDC=góc ABD(1)

lại có AD=AB(gt)nên tamgiacs ADB cân tại A nên góc ABD=góc ADB(2)

từ (1) và (2) ta có góc ADB =góc BDC nên BD là phân giác goc ADC

câu b:xét tam giác ADC và tam giác BDC ,có

AD=BC(gt);DC :chung và góc D=góc C(vì ABCD là hình thang cân) nên 2 tam giác này bằng nhau nên AC=BD

câu c:gọi K là trung điểm CD ,ta có AB=1/2 CD =CK,mà AB=BC(gt)nên BC=CK(3)

lại có AB=1/2CD=DK mà AB//DK(vì ABCD là hình thang) nên ABKD là hình bình hành

mặt khác AB=AD(gt) nên ABKD là hình thoi(vì hình bình nhành có 2 cạnh bên bằng nhau là hình thoi đó)

=>BK=AB mà BC=AB =>BK=BC(4)

từ (3)và (4)=>BK=BC=CK nên BCK là tam giác đều nên góc C=60 độ và bằng góc D,=> góc A=120độ và bằng góc B

XONG,MỎI TAY QUÁ BN K CHO MÌNH NHAN,BYE

19 tháng 7 2016

A B C D O

Gọi O là giao điểm hai đường chéo AC và BD

  • Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được : 

\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)

\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)

  • Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được : 

\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)

\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)

Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)

hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)

19 tháng 7 2016

ve hin hra roi nghi cach cm 

22 tháng 7 2018

P/s : Chứng minh rằng AC + BD < AB + BC + CD + DA .

Gọi O là giao điểm của hai đường chéo AC  và BD .

Ta có : 

Xét tam giác OAB có :

\(OA+OB>AB\) ( bất đẳng thức trong tam giác ) (1)

Xét tam giác OBC có :  

\(OB+OC>BC\)( BĐT tam giác ) (2)

Xét tam giác ODC có :

\(OD+OC>DC\) (BĐT tam giác )(3)

Xét tam giác OAD có :

\(OA+OD>AD\) (4)

Cộng từng vế ta có :

\(AC+BD< AB+BC+CD+DA\) (đpcm)