K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Ta có : \(\left\{{}\begin{matrix}xy+x+y=19\left(I\right)\\x^2y+xy^2=84\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}xy+x+y=19\\xy\left(x+y\right)=84\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=19-xy\\xy\left(19-xy\right)=84\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=19-xy\\19xy-x^2y^2-84=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=19-xy\\x^2y^2-12xy-7xy+84=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=19-xy\\xy\left(xy-12\right)-7\left(xy-12\right)=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=19-xy\\\left(xy-12\right)\left(xy-7\right)=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=19-xy\\\left[{}\begin{matrix}xy-7=0\\xy-12=0\end{matrix}\right.\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=19-xy\\\left[{}\begin{matrix}xy=7\\xy=12\end{matrix}\right.\end{matrix}\right.\)

TH1 : xy = 7 ( II )

=> \(x=\frac{7}{y}\)

- Thay xy = 7 ;\(x=\frac{7}{y}\) vào phương trình ( I ) ta được :

\(7+y+\frac{7}{y}=19\)

=> \(\frac{y^2}{y}+\frac{7}{y}=12\)

=> \(y^2-12y+7=0\)

=> \(y^2-2.y.6+36-29=0\)

=> \(\left(y-6\right)^2=29\)

=> \(\left[{}\begin{matrix}y-6=\sqrt{29}\\y-6=-\sqrt{29}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}y=6+\sqrt{29}\\y=6-\sqrt{29}\end{matrix}\right.\)

- Thay \(y=6+\sqrt{29};6-\sqrt{29}\) vào phương trình ( II ) ta được :

\(\left[{}\begin{matrix}x\left(6+\sqrt{29}\right)=7\\x\left(6-\sqrt{29}\right)=7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{7}{6+\sqrt{29}}\\x=\frac{7}{6-\sqrt{29}}\end{matrix}\right.\)

TH2 : xy = 12 ( III )

=> \(x=\frac{12}{y}\)

- Thay xy = 12 ;\(x=\frac{12}{y}\) vào phương trình ( I ) ta được :

\(12+y+\frac{12}{y}=19\)

=> \(\frac{y^2}{y}+\frac{12}{y}=7\)

=> \(y^2-7y+12=0\)

=> \(y^2-2.y.\frac{7}{2}+\frac{49}{4}-\frac{1}{4}=0\)

=> \(\left(y-\frac{7}{2}\right)^2=\frac{1}{4}\)

=> \(\left[{}\begin{matrix}y-\frac{7}{2}=\sqrt{\frac{1}{4}}\\y-\frac{7}{2}=-\sqrt{\frac{1}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}y=\sqrt{\frac{1}{4}}+\frac{7}{2}=4\\y=\frac{7}{2}-\sqrt{\frac{1}{4}}=3\end{matrix}\right.\)

- Thay y=4 ; y=3 vào phương trình ( II ) ta được :

\(\left[{}\begin{matrix}x4=7\\x3=7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{7}{3}\end{matrix}\right.\)

Vậy hệ phương trình có các nghiệm ( x; y ) là ( \(\frac{7}{4};4\) ) ; ( \(\frac{7}{3};3\) ) ;

( \(\frac{7}{6+\sqrt{29}};6+\sqrt{29}\) ) ; \(\left(\frac{7}{6-\sqrt{29}};6-\sqrt{29}\right)\)

18 tháng 8 2021

các bn ơi giúp mình với

 

NV
12 tháng 1 2021

Biến đổi pt dưới:

\(x^2-4x+4+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)

Thay vào pt đầu giải bt

12 tháng 1 2021

thanks bạn nha

27 tháng 5 2022

undefined

27 tháng 5 2022

phương trình(2): x2+xy-2y=4(x-1)

                         ⇔(x2-4x+1)+y(x-2)=0

                         ⇔(x-2)(x+y-2)=0 

giải ra 2 trường hợp thay vào phương trình (1)                      

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Lời giải:

Lấy $x.\text{PT(1)}+y.\text{PT(2)}$ thu được:
$3x^3+y^3=-2x^2y^2$

Lấy $x.\text{PT(1)}-y\text{PT(2)}$ thu được:

$3x^3-y^3=4xy$

$\Rightarrow y^3=-x^2y^2-2xy$

PT (2)$\Leftrightarrow 2x^2y+2y^2=-4x$

$\Leftrightarrow 2x^2y+y(xy^2+3x^2)=-4x$

$\Leftrightarrow x[2xy+y(y^2+3x)]=-4x$

$\Leftrightarrow x(y^3+5xy)=-4x$

$\Leftrightarrow x=0$ hoặc $y^3+5xy=-4$

Nếu $x=0$ thì dễ tìm $y=0$

Nếu $y^3+5xy=-4$

$\Leftrightarrow -x^2y^2-2xy+5xy=-4$

$\Leftrightarrow -(xy)^2+3xy+4=0$

$\Leftrightarrow (4-xy)(xy+1)=0$

$\Leftrightarrow xy=4$ hoặc $xy=-1$

Nếu $xy=4$ thì:

$y^3=-4-5xy=-24\Rightarrow y=\sqrt[3]{-24}$

$x^3=\frac{y^3+4xy}{3}=\frac{-8}{3}\Rightarrow x=\sqrt[3]{\frac{-8}{3}}$ (tm)

Nếu $xy=-1$ thì:

$y^3=-4-5xy=1\Rightarrow y=1$

$x^3=\frac{y^3+4xy}{3}=-1\Rightarrow x=-1$ (tm)

Vậy..........

NV
8 tháng 4 2021

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)

\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)