Thực hiện phép tính: 6x/x^2-9+5x/x-3+x/x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 4:
a: Sửa đề: E đối xứng D qua O
Xét tứ giác ADCE có
O là trung điểm chung của AC và DE
=>ADCE là hình bình hành
Hình bình hành ADCE có \(\hat{ADC}=90^0\)
nên ADCE là hình chữ nhật
b:
ADCE là hình chữ nhật
=>AE//CD và AE=CD
ΔABC cân tại A
mà AD là đường cao
nên D là trung điểm của BC
=>DB=DC
mà DC=AE
nên DB=AE
Vì AE//CD
nên AE//BD
Xét tứ giác AEDB có
AE//DB
AE=DB
Do đó: AEDB là hình bình hành
=>AD cắt BE tại trung điểm của mỗi đường
mà I là trung điểm của AD
nên I là trung điểm của BE
c: D là trung điểm của BC
=>\(DB=DC=\frac{BC}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)
ΔADB vuông tại D
=>\(AD^2+DB^2=AB^2\)
=>\(AD^2=10^2-6^2=64=8^2\)
=>AD=8(cm)
ΔABC có AD là đường cao
nên \(S_{ABC}=\frac12\cdot AD\cdot BC=\frac12\cdot8\cdot12=4\cdot12=48\left(\operatorname{cm}^2\right)\)
O là trung điểm của AC
=>\(S_{BOA}=\frac12\cdot S_{BAC}=\frac{48}{2}=24\left(\operatorname{cm}^2\right)\)
Câu 3:
a: ĐKXĐ của A là x<>4
\(x^2-3x=0\)
=>x(x-3)=0
=>\(\left[\begin{array}{l}x=0\\ x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=3\end{array}\right.\)
Thay x=0 vào A, ta được:
\(A=\frac{0-5}{0-4}=\frac{-5}{-4}=\frac54\)
Thay x=3 vào A, ta được:
\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)
b: \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
\(=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}=\frac{x^2-10x+25}{2x\left(x-5\right)}\)
\(=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
c: Đặt P=A:B
\(=\frac{x-5}{x-4}:\frac{x-5}{2x}\)
\(=\frac{x-5}{x-4}\cdot\frac{2x}{x-5}=\frac{2x}{x-4}\)
Để P là số nguyên thì 2x⋮x-4
=>2x-8+8⋮x-4
=>8⋮x-4
=>x-4∈{1;-1;2;-2;4;-4;8;-8}
=>x∈{5;3;6;2;8;0;12;-4}
Kết hợp ĐKXĐ, ta được:x∈{3;6;2;8;12;-4}
Bài 1:
a: \(6x^2-3xy=3x\cdot2x-3x\cdot y=3x\left(2x-y\right)\)
b: \(x^2-y^2-6x+9\)
\(=x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
=(x-3-y)(x-3+y)
c: \(x^2+5x-6\)
\(=x^2-x+6x-6\)
=x(x-1)+6(x-1)
=(x-1)(x+6)
Bài 2:
a: Sửa đề: \(\left(x+2\right)^2-\left(x-3\right)\left(x+1\right)\)
\(=x^2+4x+4-\left(x^2-2x-3\right)\)
\(=x^2+4x+4-x^2+2x+3\)
=6x+7
b: \(\left(x^3-2x^2+5x-10\right):\left(x-2\right)\)
\(=\frac{x^2\left(x-2\right)+5\left(x-2\right)}{x-2}\)
\(=x^2+5\)

a: \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\)
\(=\dfrac{5xy+y^3-x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}=\dfrac{x^3+y^3}{x^2y^2}\)
b: \(\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+9x-3x+9}{x\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x+3}{x^2-3x}\)

a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)
=-4/3x^2+8/3-10/3
=-4/3x^2-2/3
d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)
\(=3x^2+9x+22+\dfrac{68}{x-3}\)

b: \(=\dfrac{x^3+6x^2-25}{x\left(x+5\right)\left(x-2\right)}+\dfrac{x+5}{x\left(x-2\right)}\)
\(=\dfrac{x^3+6x^2-25+x^2+10x+25}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x^3+7x^2+10x}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x+2}{x-2}\)

Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)

a: =3x^3-15x^2+21x
b: =-x^3+6x^2+5x-4x^2-24x-20
=-x^3+2x^2-19x-20
c: =9x^2+15x-3x-5-7x^2-14
=2x^2+12x-19
d: =10x^2-4x+2/3
\(\frac{6}{x^2-9}+\frac{5x}{x-3}+\frac{x}{x+3}\)
\(=\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{5x}{x-3}+\frac{x}{x+3}\)
\(=\frac{6x}{\left(x-3\right)\left(x+3\right)}-\frac{5x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{6x+5x\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{6x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{6x}{x-3}\)
\(\frac{6x}{x^2-9}+\frac{5x}{x-3}+\frac{x}{x+3}\left(x\ne\pm3\right)\)
\(=\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{5x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{6x+5x^2+15x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{6x^2+18x}{\left(x-3\right)\left(x+3\right)}=\frac{6x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{6x}{x-3}\)