K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

\(\frac{6}{x^2-9}+\frac{5x}{x-3}+\frac{x}{x+3}\)

\(=\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{5x}{x-3}+\frac{x}{x+3}\)

\(=\frac{6x}{\left(x-3\right)\left(x+3\right)}-\frac{5x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{6x+5x\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{6x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{6x}{x-3}\)

12 tháng 3 2020

\(\frac{6x}{x^2-9}+\frac{5x}{x-3}+\frac{x}{x+3}\left(x\ne\pm3\right)\)

\(=\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{5x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{6x+5x^2+15x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{6x^2+18x}{\left(x-3\right)\left(x+3\right)}=\frac{6x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{6x}{x-3}\)

Câu 4:

a: Sửa đề: E đối xứng D qua O

Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

=>ADCE là hình bình hành

Hình bình hành ADCE có \(\hat{ADC}=90^0\)

nên ADCE là hình chữ nhật

b:

ADCE là hình chữ nhật

=>AE//CD và AE=CD

ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC

=>DB=DC

mà DC=AE
nên DB=AE

Vì AE//CD

nên AE//BD

Xét tứ giác AEDB có

AE//DB

AE=DB

Do đó: AEDB là hình bình hành

=>AD cắt BE tại trung điểm của mỗi đường

mà I là trung điểm của AD

nên I là trung điểm của BE

c: D là trung điểm của BC

=>\(DB=DC=\frac{BC}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)

ΔADB vuông tại D

=>\(AD^2+DB^2=AB^2\)

=>\(AD^2=10^2-6^2=64=8^2\)

=>AD=8(cm)

ΔABC có AD là đường cao

nên \(S_{ABC}=\frac12\cdot AD\cdot BC=\frac12\cdot8\cdot12=4\cdot12=48\left(\operatorname{cm}^2\right)\)

O là trung điểm của AC

=>\(S_{BOA}=\frac12\cdot S_{BAC}=\frac{48}{2}=24\left(\operatorname{cm}^2\right)\)

Câu 3:

a: ĐKXĐ của A là x<>4

\(x^2-3x=0\)

=>x(x-3)=0

=>\(\left[\begin{array}{l}x=0\\ x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=3\end{array}\right.\)

Thay x=0 vào A, ta được:

\(A=\frac{0-5}{0-4}=\frac{-5}{-4}=\frac54\)

Thay x=3 vào A, ta được:

\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)

b: \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)

\(=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)

\(=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}=\frac{x^2-10x+25}{2x\left(x-5\right)}\)

\(=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)

c: Đặt P=A:B

\(=\frac{x-5}{x-4}:\frac{x-5}{2x}\)

\(=\frac{x-5}{x-4}\cdot\frac{2x}{x-5}=\frac{2x}{x-4}\)

Để P là số nguyên thì 2x⋮x-4

=>2x-8+8⋮x-4

=>8⋮x-4

=>x-4∈{1;-1;2;-2;4;-4;8;-8}

=>x∈{5;3;6;2;8;0;12;-4}

Kết hợp ĐKXĐ, ta được:x∈{3;6;2;8;12;-4}

Bài 1:

a: \(6x^2-3xy=3x\cdot2x-3x\cdot y=3x\left(2x-y\right)\)

b: \(x^2-y^2-6x+9\)

\(=x^2-6x+9-y^2\)

\(=\left(x-3\right)^2-y^2\)

=(x-3-y)(x-3+y)

c: \(x^2+5x-6\)

\(=x^2-x+6x-6\)

=x(x-1)+6(x-1)

=(x-1)(x+6)

Bài 2:

a: Sửa đề: \(\left(x+2\right)^2-\left(x-3\right)\left(x+1\right)\)

\(=x^2+4x+4-\left(x^2-2x-3\right)\)

\(=x^2+4x+4-x^2+2x+3\)

=6x+7

b: \(\left(x^3-2x^2+5x-10\right):\left(x-2\right)\)

\(=\frac{x^2\left(x-2\right)+5\left(x-2\right)}{x-2}\)

\(=x^2+5\)

a: \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\)

\(=\dfrac{5xy+y^3-x\left(5y-x^2\right)}{x^2y^2}\)

\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}=\dfrac{x^3+y^3}{x^2y^2}\)

b: \(\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\)

\(=\dfrac{x^2+9x-3x+9}{x\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x+3}{x^2-3x}\)

 

a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)

=-4/3x^2+8/3-10/3

=-4/3x^2-2/3

d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)

\(=3x^2+9x+22+\dfrac{68}{x-3}\)

19 tháng 12 2021

b: \(=\dfrac{x^3+6x^2-25}{x\left(x+5\right)\left(x-2\right)}+\dfrac{x+5}{x\left(x-2\right)}\)

\(=\dfrac{x^3+6x^2-25+x^2+10x+25}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x^3+7x^2+10x}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x+2}{x-2}\)

Bài 4:

1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)

=>\(x^3-1-x^3-6x=11\)

=>-6x-1=11

=>-6x=11+1=12

=>\(x=\dfrac{12}{-6}=-2\)

2: \(16x^2-\left(3x-4\right)^2=0\)

=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)

=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)

=>(x+4)(7x-4)=0

=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)

3: \(x^3-x^2-3x+3=0\)

=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)

=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-3\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))

=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)

=>\(x^2+4x+4=x^2-1\)

=>4x+4=-1

=>4x=-5

=>\(x=-\dfrac{5}{4}\left(nhận\right)\)

5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)

\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)

=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)

=>3x+1=0

=>3x=-1

=>\(x=-\dfrac{1}{3}\left(nhận\right)\)

6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)

\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)

=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)

=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)

=>\(\dfrac{-x-3}{x}=1\)

=>-x-3=x

=>-2x=3

=>\(x=-\dfrac{3}{2}\left(nhận\right)\)

27 tháng 12 2022

loading...

28 tháng 12 2022

bn ơi 2022+2021=4043 mà bn

a: =3x^3-15x^2+21x

b: =-x^3+6x^2+5x-4x^2-24x-20

=-x^3+2x^2-19x-20

c: =9x^2+15x-3x-5-7x^2-14

=2x^2+12x-19

d: =10x^2-4x+2/3